Testosterone affects food intake and body weight of weanling male rats

1982 ◽  
Vol 16 (6) ◽  
pp. 933-936 ◽  
Author(s):  
Antonio A. Nunez ◽  
Marjorie Grundman
Keyword(s):  
2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2010 ◽  
Vol 95 (1) ◽  
pp. 92-99 ◽  
Author(s):  
L.L. Bellinger ◽  
P.J. Wellman ◽  
R.B.S. Harris ◽  
E.W. Kelso ◽  
P.R. Kramer

1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.


2004 ◽  
Vol 5 (4) ◽  
pp. 255-264 ◽  
Author(s):  
Terry A. Lennie

Food intake and body weight changes in response to induction of acute inflammation were examined in intact cycling females, ovariectomized females, and sham-operated male rats. In intact females, body weight and feeding responses were compared between rats in which inflammation was induced on day of estrus with rats in which inflammation was induced on day of diestrus. Anorexia and weight loss were more severe in the female rats with inflammation induced on estrus day, which coincides with peak serum estrogen levels. In ovariectomized females, inflammation was induced the day after rats received injections of estrogen, progesterone, or sesame oil (vehicle). Males received vehicle injections. Among female rats, the group that received estradiol injections the previous day displayed the most severe anorexia. The least severe anorexia was observed in female rats that received progesterone the previous day. Food intake of female rats that received vehicle injections prior to induction of inflammation was greater than the rats receiving estrogen but less than the rats receiving progesterone. Male rats displayed the most severe anorexia and greatest weight loss. These data suggest that, although females exposed to estradiol prior to induction of acute inflammation display more severe anorexia than those exposed to progesterone, it may be that progesterone attenuates severity of anorexia rather than estrogen solely potentiating severity. Male rats, however, appear to experience the most severe anorexia in response to this form of inflammation.


2014 ◽  
Vol 11 (1) ◽  
pp. 36 ◽  
Author(s):  
Clare L Adam ◽  
Patricia A Williams ◽  
Matthew J Dalby ◽  
Karen Garden ◽  
Lynn M Thomson ◽  
...  

1992 ◽  
Vol 126 (5) ◽  
pp. 434-437 ◽  
Author(s):  
María Abelenda ◽  
Maria Paz Nava ◽  
Alberto Fernández ◽  
María Luisa Puerta

The participation of sexual hormones in body weight regulation is partly accomplished by altering food intake. Nonetheless, female sexual hormones also alter brown adipose tissue thermogenesis in females. This study was aimed to find out if male hormones could alter brown adipose tissue thermogenesis in male rats. Testosterone was administered by means of Silastic capsules in adult male rats acclimated either at 28°C (thermoneutrality) or at 6°C (cold), treatment lasting 15 days. Food intake and body weight gain were reduced by hormonal treatment. However, brown adipose tissue mass, protein content, mitochondrial mass and GDP-binding were unchanged at both environmental temperatures. Accordingly, testosterone participation in body weight regulation is thought to be carried out without altering brown adipose tissue thermogenesis. A reduction in the weight of the sex accessory glands was also observed after cold acclimation.


Sign in / Sign up

Export Citation Format

Share Document