Effects of meal frequency on energy utilization in rats

1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.

1998 ◽  
Vol 275 (1) ◽  
pp. R180-R185 ◽  
Author(s):  
Andrea Kahler ◽  
Nori Geary ◽  
Lisa A. Eckel ◽  
L. Arthur Campfield ◽  
Françoise J. Smith ◽  
...  

The potent hypophagic effect of OB protein (OB) is well established, but the mechanism of this effect is largely unknown. We investigated the effects of chronic administration of a novel modified recombinant human OB (Mod-OB) with a prolonged half-life (>48 h) on ad libitum food intake, spontaneous meal patterns, and body weight in 24 adult, male Sprague-Dawley rats (body weight at study onset: 292 g). Single daily subcutaneous injections of Mod-OB (4 mg/kg daily) for 8 consecutive days significantly reduced ad libitum food intake compared with vehicle injections from injection day 3through postinjection day 3. Mod-OB-injected rats ate between 4.5 and 7.1 g (or 13–20%) per day less than controls, with the reduction primarily occurring during the dark period. Body weight gain was significantly decreased in response to Mod-OB from injection day 8until postinjection day 4, with a maximum difference of 24 g on postinjection day 3. The reduction of food intake by Mod-OB was mainly due to a 21–34% decrease in nocturnal spontaneous meal size. There was no significant effect of Mod-OB on nocturnal meal frequency or duration. Mod-OB also did not reliably affect the size, duration, or frequency of diurnal meals. Mod-OB-injected rats displayed no compensatory hyperphagia after the injection period. These results indicate that chronically administered OB selectively affects the mechanisms controlling meal size in male rats.


2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2021 ◽  
Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershaeuser ◽  
Stefanie Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion Conclusively, we show that UCP1 does not protect against diet-induced obesity at thermoneutrality. Further we introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3893 ◽  
Author(s):  
Desiree M. Sigala ◽  
Adrianne M. Widaman ◽  
Bettina Hieronimus ◽  
Marinelle V. Nunez ◽  
Vivien Lee ◽  
...  

Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18–35 kg/m2; 18–40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23–28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p < 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (−4%, p = 0.0037, effect of SB). Fructose-SB decreased (−14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.


2001 ◽  
Vol 137 (1) ◽  
pp. 85-96 ◽  
Author(s):  
R. SANDERSON ◽  
M. S. DHANOA ◽  
C. THOMAS ◽  
A. B. McALLAN

Growth and efficiencies of nitrogen and energy utilization for growth by 72 young British Friesian steers (initial live weight (LW) 110 kg) offered a well preserved, formic acid-treated, perennial ryegrass silage with and without supplements of fish meal were examined. Silage was offered either alone or mixed with 50, 100 or 150 g fish meal/kg silage dry matter (DM) and each diet was offered either ad libitum or intakes were restricted to 16, 19 or 22 g dietary DM/kg LW/day. Treatments were imposed over a period of 132 days. Body component weight gains were determined by comparative slaughter.Increasing the level of either feeding or fish meal increased rates of empty body weight gain linearly (P<0·001) and curvilinearly (P<0·05) respectively. Fish-meal supplementation increased rates of ash and crude protein gain (P<0·001) but, in comparison with the curvilinear response to increasing level of feeding (P<0·001), had small linear effects on fat gain (P>0·01). Consequently, in terms of whole body composition, animals given fish meal were leaner than animals offered silage alone. Fish-meal supplementation had no significant effect on the composition of the carcass but increased the concentration of protein in the liver and gastrointestinal tract.The increase in nitrogen intake associated with feeding fish meal resulted in a reduction in the efficiency of nitrogen utilization as level of fish meal increased. Nitrogen intake required for maintenance was estimated to be 1·054 g/kg LW0·75. In spite of marked differences in the composition of the empty body-weight gain, there was no evidence to support an effect of fish meal on the efficiency of metabolizable energy (ME) utilization for growth (kf) which was estimated to be 0·346 on the basis of data scaled by LW0·75. ME intake required for maintenance (MEm) was estimated to be 0·536 and 0·502 MJ/kg LW0·75 for silage alone and the 150 g fish-meal level respectively.


2014 ◽  
Vol 11 (1) ◽  
pp. 36 ◽  
Author(s):  
Clare L Adam ◽  
Patricia A Williams ◽  
Matthew J Dalby ◽  
Karen Garden ◽  
Lynn M Thomson ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. E78-E84 ◽  
Author(s):  
Sabine Strassburg ◽  
Stefan D. Anker ◽  
Tamara R. Castaneda ◽  
Lukas Burget ◽  
Diego Perez-Tilve ◽  
...  

Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is the only circulating agent to powerfully promote a positive energy balance. Such action is mediated predominantly by central nervous system pathways controlling food intake, energy expenditure, and nutrient partitioning. The ghrelin pathway may therefore offer therapeutic potential for the treatment of catabolic states. However, the potency of the endogenous hormone ghrelin is limited due to a short half-life and the fragility of its bioactivity ensuring acylation at serine 3. Therefore, we tested the metabolic effects of two recently generated GHS-R agonists, BIM-28125 and BIM-28131, compared with ghrelin. All agents were administered continuously for 1 mo in doses of 50 and 500 nmol·kg−1·day−1 using implanted subcutaneous minipumps in rats. High-dose treatment with single agonists or ghrelin increased body weight gain by promoting fat mass, whereas BIM-28131 was the only one also increasing lean mass significantly. Food intake increased during treatment with BIM-28131 or ghrelin, whereas no effects on energy expenditure were detected. With the lower dose, only BIM-28131 had a significant effect on body weight. This also held true when the compound was administered by subcutaneous injection three times/day. No symptoms or signs of undesired effects were observed in any of the studies or treated groups. These results characterize BIM-28131 as a promising GHS-R agonist with an attractive action profile for the treatment of catabolic disease states such as cachexia.


2016 ◽  
Vol 56 (4) ◽  
pp. 1629-1636 ◽  
Author(s):  
Joan Serrano ◽  
Àngela Casanova-Martí ◽  
Andreu Gual ◽  
Anna Maria Pérez-Vendrell ◽  
M. Teresa Blay ◽  
...  

2006 ◽  
Vol 291 (2) ◽  
pp. R367-R375 ◽  
Author(s):  
Niels Vrang ◽  
Andreas Nygaard Madsen ◽  
Mads Tang-Christensen ◽  
Gitte Hansen ◽  
Philip Just Larsen

The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3–36) in mice and rats, as well as metabolic effects of chronic PYY(3–36) administration to diet-induced obese (DIO) mice and rats. A single intraperitoneal injection of PYY(3–36) inhibited food intake in mice, but not in rats. We next investigated the effects of increasing doses (100, 300, and 1,000 μg·kg−1·day−1) of PYY(3–36) administered subcutaneously via osmotic minipumps on food intake and body weight in DIO C57BL/6J mice. Whereas only the highest dose (1,000 μg·kg−1·day−1) of PYY(3–36) significantly reduced food intake over the first 3 days, body weight gain was dose dependently reduced, and on day 28 the group treated with 1,000 μg·kg−1·day−1 PYY(3–36) weighed ∼10% less than the vehicle-treated group. Mesenteric, epididymal, retroperitoneal, and inguinal fat pad weight was dose dependently reduced. Subcutaneous administration of PYY(3–36) (250 and 1,000 μg·kg−1·day−1) for 28 days reduced body weight and improved glycemic control in glucose-intolerant DIO rats. Neither 250 nor 1,000 μg/kg PYY(3–36) elicited a conditioned taste aversion in male rats.


Sign in / Sign up

Export Citation Format

Share Document