Feedback moduiaticn of gilcose-induced insulin secretion by arachidonic acid meiabol: Possible molecular mechanisms and relevance to diabetes mellitus

1981 ◽  
Vol 7 (6) ◽  
pp. 581-589 ◽  
Author(s):  
Stewart A. Metz
2013 ◽  
Vol 16 (4) ◽  
pp. 11-16 ◽  
Author(s):  
Irina Arkad'evna Bondar' ◽  
Olesya Yur'evna Shabel'nikova

More than 100 genes associated with the risk of type 2 diabetes mellitus (T2DM) are now established. Most of them affect insulin secretion, adipogenesis and insulin resistance, but the exact molecular mechanisms determining their involvement in the pathogenesis of T2DM are not understood completely.


Diabetes ◽  
1988 ◽  
Vol 37 (7) ◽  
pp. 992-996 ◽  
Author(s):  
J. Turk ◽  
J. H. Hughes ◽  
R. A. Easom ◽  
B. A. Wolf ◽  
D. W. Scharp ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
pp. 106-114
Author(s):  
Guang Hao ◽  
Xiaoyu Ma ◽  
Mengru Jiang ◽  
Zhenzhen Gao ◽  
Ying Yang

This study examined the in vivo effects of Echinops spp. polysaccharide B on type 2 diabetes mellitus in Sprague-Dawley rats. We constructed a type 2 diabetes mellitus Sprague-Dawley rat models by feeding a high-fat and high-sugar diet plus intraperitoneal injection of a small dose of streptozotocin. Using this diabetic rat model, different doses of Echinops polysaccharide B were administered orally for seven weeks. Groups receiving Xiaoke pill and metformin served as positive controls. The results showed that Echinops polysaccharide B treatment normalized the weight and blood sugar levels in the type 2 diabetes mellitus rats, increased muscle and liver glycogen content, improved glucose tolerance, increased insulin secretion, and reduced glucagon and insulin resistance indices. More importantly, Echinops polysaccharide B treatment upregulated the expression of insulin receptor in the liver, skeletal muscles, and pancreas, and significantly improved the expression levels of insulin receptor substrate-2 protein in the liver and pancreas, as well as it increased insulin receptor substrate-1 expression in skeletal muscles. These two proteins play crucial roles in increasing insulin secretion and in controlling type 2 diabetes mellitus. The findings of the present study suggest that Echinops polysaccharide B could improve the status of diabetes in type 2 diabetes mellitus rats, which may be achieved by improving insulin resistance. Our study provides a new insight into the development of a natural drug for the control of type 2 diabetes mellitus.


Author(s):  
Anagha Gosavi ◽  
Ram V. Ramekar

Prameha is disease of Mutravaha Srotasa having Kapha dominancy which can be correlated with diabetes mellitus. The term diabetes mellitus describes a metabolic disorder of multiple etiologies characterized by chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. Madhumeha is considered as a subtype under the Vatika type of Prameha and it is characterized by passage of urine with sweet taste like honey along with sweetness of whole body. With appropriate use of Ayurvedic preventive measures such as Dincharya, Ritucharya, Aharvidhi and therapeutic measures Madhumeha (DM) can be prevented.


2003 ◽  
Vol 17 (2) ◽  
pp. 137-142 ◽  
Author(s):  
E. Akbay ◽  
M. B. Tıras ◽  
I. Yetkin ◽  
F. Törüner ◽  
R. Ersoy ◽  
...  

2017 ◽  
Vol 31 (6) ◽  
pp. 2674-2685 ◽  
Author(s):  
Soo Min Lee ◽  
Jasmine Baik ◽  
Dara Nguyen ◽  
Victoria Nguyen ◽  
Shiwei Liu ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 803
Author(s):  
Giuseppina Emanuela Grieco ◽  
Noemi Brusco ◽  
Giada Licata ◽  
Daniela Fignani ◽  
Caterina Formichi ◽  
...  

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1236
Author(s):  
Jesús Burillo ◽  
Patricia Marqués ◽  
Beatriz Jiménez ◽  
Carlos González-Blanco ◽  
Manuel Benito ◽  
...  

Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document