In vivo absorption of L-leucine by the intestine of the toadfish opsanus tau - the effect of several heavy metal compounds

1986 ◽  
Vol 9 (2-3) ◽  
pp. 180
2002 ◽  
Vol 56 (11) ◽  
pp. 483-488
Author(s):  
Sasa Jovanic ◽  
Dragoslav Stoiljkovic ◽  
Ivanka Popovic

The contamination of important synthetic (surface unmodified) polymers by various heavy metal compounds (such as copper, manganese and lead) in aqueous medium was investigated in this study. The influence of the pH of the aqueous medium, temperature and metal type on contamination was investigated during a 10 day period. It was found that increasing pH contributed to higher polymer contamination (at higher pH 100 times for copper and up to 400 times for lead), as well as contact with easily penetrable substances. Increasing temperature decreased contamination by the metal compound for PELD and PET which was not the case for PEHD and PR.


1986 ◽  
Vol 12 (14) ◽  
pp. 2521-2540 ◽  
Author(s):  
A. Muktadir ◽  
A. Babar ◽  
A. J. Cutie ◽  
F. M. Plakogiannis

2017 ◽  
Vol 44 (5) ◽  
pp. 723-728 ◽  
Author(s):  
Nathalie R. Wingert ◽  
Natália O. dos Santos ◽  
Sarah C. Campanharo ◽  
Elisa S. Simon ◽  
Nadia M. Volpato ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0164192 ◽  
Author(s):  
Muhammad Qumar ◽  
Ratchaneewan Khiaosa-ard ◽  
Poulad Pourazad ◽  
Stefanie U. Wetzels ◽  
Fenja Klevenhusen ◽  
...  

2018 ◽  
Vol 62 (2) ◽  
pp. 13-18
Author(s):  
D. Marcinčáková ◽  
M. Falis ◽  
P. Schusterová ◽  
P. Váczi ◽  
S. Marcinčák ◽  
...  

Abstract The aim of this study was to evaluate the potential protective role of Agrimonia eupatoria L. in heavy metal induced nephrotoxicity. Rabbit kidney epithelial cells (RK13) were used as the model cell line. They were exposed to three different heavy metal compounds: cadmium chloride dihydrate CdCl2.2H2O (15 and 20 mg.l−1), potassium dichromate K2Cr2O7 (1, 10 mg.l−1), and zinc sulfate heptahydrate ZnSO4.7H2O (50, 150 mg.l−1) simultaneously with agrimony (ethanolic extract, 100 mg.l−1). The cell response was recorded using the xCELLigence system or real-time cell analysis (RTCA) as a cell index (CI) and expressed as cell adherence (%) compared to control cells without treatment. The potential nephroprotective effects were recorded in cells treated with chromium (1 a 10 mg.l−1) and agrimony, where the cell adherence increased from 95.11 ± 11.25 % and 7.24 ± 0.33 % to 103.26 ± 1.23 % and 68.54 ± 4.89 % (P < 0.05) respectfully and also with a combination of agrimony and zinc (150 mg.l−1), where the adherence increased from 57.45 ± 1.98 % to 95.4 ± 6.95 %. During the cell exposure to cadmium in combination with agrimony, the protective effect was not recorded; the adherence of cells was even decreased (P < 0.05).


2009 ◽  
Vol 3 (2) ◽  
pp. 48-64
Author(s):  
Kadhim M. Ibrahim ◽  
Shaimaa A. Yousir

Several experiments were carried out to study heavy metal tolerance in tissue cultures or whole plants of S. grandiflora., Callus was induced and maintained on modified Murashige and Skoog, 1962 medium (MS) supplemented with (0.5)mg/l benzyl adenine and (2)mg/l 2,4-phenoxy acetic acid . Heavy metals (Cd, Co, Cu, Cr or Zn) were added to the culture medium at different concentrations as contamination agents. In order to asses the effect of these heavy metals on seed germination; seeds were sown in soil contaminated with different concentrations of heavy metals for 3 weeks. Atomic Absorption Spectrophotometer was used for analysis of samples taken from whole plants and callus cultures. Results showed that callus fresh weight decreased with increasing heavy metal concentration in cultural medium. Germination percentages and plant heights increased over time. However, a reduction occurred in these parameters with increasing heavy metal levels. Percentages of metals accumulated in calli were (0.001, 0.011, 0.012 and 0.013%) at (0.0, 0.05, 0.075 and 0.1)mg/l Cd respectively; (0.001, 0.008, 0.016 and 0.006%) at (0.0, 0.1, 0.25 and 0.5)mg/l Co respectively; (0.001, 0.020, 0.034 and 0.015%) at (0.0, 0.075, 0.2 and 0.5)mg/l Cu respectively; (0.001, 0.013, 0.012 and 0.010%) at (0.0, 0.25, 0.4 and 0.5)mg/l Cr respectively and (0.027, 0.051, 0.059 and 0.056%) at (0.0 , 0.75, 1.0 and 1.5)mg/l Zn respectively. Percentages of metals accumulated in whole plants were (0.08, 0.55, 1.11, 0.83 and 0.44%) at (0.0, 1.0, 2.0, 3.0 and 4.0)mg/Kg soil Cd respectively; (0.11, 0.22, 0.55, 0.47 and 0.44%) at (0.0, 15.0, 30.0 45.0 and 60.0)mg/Kg soil Co respectively; (0.01, 0.10, 0.57, 0.58 and 0.72%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cu respectively. (0.08, 0.80, 1.28, 1.31 and 0.88%) at (0.0, 25.0, 50.0, 75.0 and 100.0)mg/Kg soil Cr respectively and (0.06, 1.11, 1.20, 1.83 and 2.22%) at (0.0, 100.0, 200.0, 300.0 and 400.0)mg/Kg soil Zn respectively.


2019 ◽  
Vol 16 (1) ◽  
pp. 01-13 ◽  
Author(s):  
Pragya Goyal ◽  
Pranoti Belapurkar ◽  
Anand Kar

Microbial assisted remediation is the ray of hope in the current scenario of tremendous heavy metal pollution. The indiscriminate release of heavy metal laden industrial effluents in the water bodies and soil is now manifesting itself in the form of life threatening health hazards to humans. The conventional heavy metal remediation strategies are not only expensive but are ineffective in low metal concentrations. Microbial assisted remediation of heavy metals has come forward as the cheap and easy alternative. Amongst the various bacterial genera actively involved in bioremediation of cadmium and nickel in the environment, genus Bacillus has shown remarkable ability in this respect owing to its various biochemical and genetic pathways. It can perform bioremediation using multiple mechanisms including biosorption and bioaccumulation. This genus has also been able to reduce toxicity caused by cadmium and nickel in eukaryotic cell lines and in mice, a property also found in probiotic genera like Lactobacillus and Bifidobacterium. This paper reviews the role of environmentally present and known probiotic species of genus Bacillus along with different probiotic genera for their various mechanisms involved for remediation of cadmium and nickel.


Sign in / Sign up

Export Citation Format

Share Document