In situ rutherford backscattering measurements of ion-beam-induced atomic mixing

1983 ◽  
Vol 218 (1-3) ◽  
pp. 703-706 ◽  
Author(s):  
H.H. Jorch ◽  
R.D. Werner
1988 ◽  
Vol 3 (6) ◽  
pp. 1063-1071 ◽  
Author(s):  
U. G. Akano ◽  
D. A. Thompson ◽  
W. W. Smeltzer ◽  
J. A. Davies

Atomic mixing in Ni/Pd bilayer films due to 120 keV Ar+ irradiation in the thermally assisted regime (523−673 K) has been measured, in situ, using Rutherford backscattering with 2.0 MeV 4He+ ions. The mean diameter of grains in these polycrystallinc films increased from 10 to 60 nm, following Ar+ bombardment at 573 K. Initial mixing was rapid due to grain boundary diffusion and incorporation of the metal solute into the solvent metal matrix by grain growth; this mixing stage was essentially complete within 10 min for annealed films or after an Ar+ dose of 4 × 1015 cm−2 in irradiated films (10 min irradiation). No further measurable mixing occurred in the annealed, unirradiated films. For the irradiated samples the initial rapid mixing (6−35 atoms/ion) was followed by a slower mixing stage of 0.7–1.8 atoms/ion for irradiation doses of up to 2.5 × 1016 Ar+ cm−2. The Ar+ bombardment gave rise to much smaller mixing levels when the Pd films were deposited on large-grain or single-crystal Ni. A diffusion analysis demonstrates that the effective diffusivity, Deff, for ion-irradiation-enhanced mixing in the thermally assisted regime satisfied the relation Dl < Deff < DB, where the ratio of the grain boundary to lattice diffusivity was DB/Dl > 106.


1981 ◽  
Vol 7 ◽  
Author(s):  
S.T. Picraux ◽  
D. M. Follstaedt ◽  
J. Delafond

ABSTRACTThe atomic mixing of evaporated Al/Sb films and of Al/Ag films on Al<110> crystal substrates by 400 keV Xe ion beams has been investigated. Concentration depth profiles were measured in situ by 1.5 MeV He scattering as a function of Xe fluence from 2 to 32×1015 Xe/cm2. The initial mixing rates are similar at 85 and 300 K; mixing proceeds by rapid motion of Al (≈15 Al/Xe) into and uniformly through the thickness of the Sb film and by a slow motion of Sb (≈0.5 Sb/Xe) into the Al<110> substrate. More rapid Sb mixing into Al occurs for polycrystalline Al. The rate for Al into Sb slows at concentrations approaching the stable AlSb phase. Appreciably higher rates of Sb mixing into Al (2.2 to 2.8 Sb/Xe) occur at 575 K. Mixing rates for the highly soluble system, Al/Ag, are compared to the nearly insoluble Al/Sb at 85 and 300 K. Appreciably higher rates are found for Ag than for Sb, suggesting the influence of chemical driving forces even at these low temperatures.


1986 ◽  
Vol 1 (3) ◽  
pp. 503-509 ◽  
Author(s):  
M. Adel ◽  
R. Kalish ◽  
V. Richter

The removal of defects in diamond by light-ion bombardment has been studied by means of Rutherford backscattering spectroscopy (RBS) channeling techniques. The damage produced by 1 × 1014 Sb ions cm−2 at 300 keV (below the critical dose for graphitization) was observed to diminish by as much as 50% under bombardment with H and He ions. The ion-beam-induced annealing has been studied as a function of ion dose and incident angle (channeling and random). Although the data sets differ markedly, they nearly coincide when the dose is normalized to the energy deposited by elastic collisions in the damaged region. This may indicate that nuclear and not electronic collisions contribute primarily to the in situ annealing in a reasonably good insulator such as diamond.


Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Sign in / Sign up

Export Citation Format

Share Document