scholarly journals Modification by high energy ion irradiation of iron-alumina nano-composites

Author(s):  
Ch. Laurent ◽  
E. Dooryhée ◽  
C. Dufour ◽  
F. Gourbilleau ◽  
M. Levalois ◽  
...  
2015 ◽  
Vol 1769 ◽  
Author(s):  
A. Crespo-Sosa ◽  
P.E. Mota-Santiago ◽  
J.L. Jiménez-Hernández ◽  
H.G. Silva-Pereyra ◽  
E.V. García-Ramírez ◽  
...  

ABSTRACTSapphire is best known for its hardness that makes it ideal for many mechanical and optical applications, but its resistance to radiation damage and its optical properties, combined with metallic nano-particles, make it promising for future opto-electronic and plasmonic devices. In this paper, we present an overview of our work on the fabrication of metallic nano-particles embedded in synthetic sapphire by means of ion implantation, thermal annealing and high energy ion irradiation. We show that we can have control over the amount and size of the nano particles formed inside the matrix by carefully choosing the parameters during the preparation process. Furthermore, we show that anisotropic nano particles can be obtained by an adequate high energy ion irradiation of the originally spherical nano particles. We also have studied the linear and non-linear optical properties of these nano-composites and have confirmed that they are large enough for future applications.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Amekura ◽  
M. Toulemonde ◽  
K. Narumi ◽  
R. Li ◽  
A. Chiba ◽  
...  

AbstractDamaged regions of cylindrical shapes called ion tracks, typically in nano-meters wide and tens micro-meters long, are formed along the ion trajectories in many insulators, when high energy ions in the electronic stopping regime are injected. In most cases, the ion tracks were assumed as consequences of dense electronic energy deposition from the high energy ions, except some cases where the synergy effect with the nuclear energy deposition plays an important role. In crystalline Si (c-Si), no tracks have been observed with any monomer ions up to GeV. Tracks are formed in c-Si under 40 MeV fullerene (C60) cluster ion irradiation, which provides much higher energy deposition than monomer ions. The track diameter decreases with decreasing the ion energy until they disappear at an extrapolated value of ~ 17 MeV. However, here we report the track formation of 10 nm in diameter under C60 ion irradiation of 6 MeV, i.e., much lower than the extrapolated threshold. The diameters of 10 nm were comparable to those under 40 MeV C60 irradiation. Furthermore, the tracks formed by 6 MeV C60 irradiation consisted of damaged crystalline, while those formed by 40 MeV C60 irradiation were amorphous. The track formation was observed down to 1 MeV and probably lower with decreasing the track diameters. The track lengths were much shorter than those expected from the drop of Se below the threshold. These track formations at such low energies cannot be explained by the conventional purely electronic energy deposition mechanism, indicating another origin, e.g., the synergy effect between the electronic and nuclear energy depositions, or dual transitions of transient melting and boiling.


2002 ◽  
Vol 378-381 ◽  
pp. 527-530 ◽  
Author(s):  
H Sato ◽  
N Ishikawa ◽  
A Iwase ◽  
Y Chimi ◽  
T Hashimoto ◽  
...  

2013 ◽  
Vol 781-784 ◽  
pp. 357-361 ◽  
Author(s):  
Igor V. Khromushin ◽  
Taтiana I. Aksenova ◽  
Turgora Tuseyev ◽  
Karlygash K. Munasbaeva ◽  
Yuri V. Ermolaev ◽  
...  

The effect of irradiation with heavy ions Ne, Ar, and Kr of various energies on the structure and properties of ceramic barium cerate doped with neodymium and annealed in air at 650°C for 7 hours is studied. It is noted that blistering was observed on cerate surface during its irradiation by low energy Ne ions, whereas it was not observed under low-energy Ar and Kr ions irradiation. Irradiation of the cerate with high energy ions caused partial amorphization of the irradiated surface of the material, while the structure of the non-irradiated surface did not change. In addition, the irradiated surface of the cerate endured solid-phase structural changes. Thus, upon high-energy ions irradiation in the range of Ne, Ar, Kr the cerate surface resembled the stages of spherulite formation - nucleation, growth (view of cauliflower), formation of spherulitic crust, respectively. The increase in water molecules release and reduction of molecular oxygen release from the barium cerate, irradiated by high-energy ions is found during vacuum constant rate heating. It is concluded that cerates undergo changes to the distances significantly exceeding the ion ranges in these materials. Features of high-energy ions influence on thermal desorption of carbon dioxide from cerates show, apparently, the formation of weakly bound carbonate compounds on the cerate surface in the irradiation process.


2021 ◽  
Vol 23 (39) ◽  
pp. 22673-22684
Author(s):  
Adéla Jagerová ◽  
Romana Mikšová ◽  
Oleksander Romanenko ◽  
Iva Plutnarova ◽  
Zdeněk Sofer ◽  
...  

The high-energy ion irradiation induces the creation of ZnO surface nanostructures affecting optical properties, which may be promising for photocatalysis and optoelectronics.


2019 ◽  
Vol 164 ◽  
pp. 788-798 ◽  
Author(s):  
Sumit Bhattacharya ◽  
Xiang Liu ◽  
Yinbin Miao ◽  
Kun Mo ◽  
Zhi-Gang Mei ◽  
...  

2021 ◽  
Vol 68 (1) ◽  
pp. 24-28
Author(s):  
Seshagiri Rao Challa ◽  
Nahuel A. Vega ◽  
Nahuel A. Mueller ◽  
Christian Kristukat ◽  
Mario E. Debray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document