Determination of a tridimensional failure criterion at the fibre/matrix interface of an organic-matrix/discontinuous-reinforcement composite

1996 ◽  
Vol 56 (7) ◽  
pp. 755-760 ◽  
Author(s):  
J Fitoussi
2019 ◽  
Vol 22 ◽  
pp. 38-47 ◽  
Author(s):  
Ondřej Januš ◽  
František Girgle ◽  
Iva Rozsypalová ◽  
Vojtěch Kostiha ◽  
Lenka Bodnárová ◽  
...  

The paper describes an experimental program for studying the fatigue performance of GFRP bars, which has been initiated by the authors. Two different test configurations were used to assess the fatigue behaviour. The bare specimens were tested within the first series. A modified gripping system was used to reduce eccentricity when the bar was not directly fixed. However, the boundary conditions seem to affect the results. The second series consisted of a set of specimens of bars embedded in concrete. This configuration seems appropriate for determination of fatigue life of GFRP bars. Two S-N curves for bare bars and bars embedded in concrete were created and compared. Significant reduction of interlaminar shear strength at the beginning of fatigue loading proved matrix or fibre/matrix interface damage.


2007 ◽  
Vol 334-335 ◽  
pp. 289-292 ◽  
Author(s):  
F.M. Zhao ◽  
Z. Liu ◽  
F.R. Jones

Phase-stepping photoelasticity has been used to study the fragmentation of an E-glass fibre in epoxy resin and examine quantitatively the effect of a transverse matrix crack on the stress transfer at an interphase. Unsized glass fibre was coated by plasma polymerisation with a crosslinked conformal film of 90% acrylic acid and 10% 1,7-octadiene. The micro-mechanical response at the fibre-matrix interphase and in the adjacent matrix has been described in detail using contour maps of fringe order. From these, the interfacial shear stress profiles at fibre-break have been calculated.


2013 ◽  
Vol 592-593 ◽  
pp. 401-404
Author(s):  
Zdeněk Chlup ◽  
Martin Černý ◽  
Adam Strachota ◽  
Martina Halasova ◽  
Ivo Dlouhý

The fracture behaviour of long fibre reinforced composites is predetermined mainly by properties of fibre-matrix interface. The matrix prepared by pyrolysis of polysiloxane resin possesses ability to resist high temperatures without significant damage under oxidising atmosphere. The application is therefore limited by fibres and possible changes in the fibre matrix interface. The study of development of interface during high temperature exposition is the main aim of this contribution. Application of various techniques as FIB, GIS, TEM, XRD allowed to monitor microstructural changes in the interface of selected places without additional damage caused by preparation. Additionally, it was possible to obtain information about damage, the crack formation, caused by the heat treatment from the fracture mechanics point of view.


1996 ◽  
Vol 31 (23) ◽  
pp. 6145-6153 ◽  
Author(s):  
A. Pegoretti ◽  
M. L. Accorsi ◽  
A. T. Dibenedetto

Sign in / Sign up

Export Citation Format

Share Document