The reduction of vinyl side-chains of Mg-protoporphyrin IX monomethyl ester in vitro

1973 ◽  
Vol 313 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Robert K. Ellsworth ◽  
Amy S. Hsing
Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1157
Author(s):  
David Stuart ◽  
Malin Sandström ◽  
Helmy M. Youssef ◽  
Shakhira Zakhrabekova ◽  
Poul Erik Jensen ◽  
...  

Chlorophyll is the light-harvesting molecule central to the process of photosynthesis. Chlorophyll is synthesized through 15 enzymatic steps. Most of the reactions have been characterized using recombinant proteins. One exception is the formation of the isocyclic E-ring characteristic of chlorophylls. This reaction is catalyzed by the Mg-protoporphyrin IX monomethyl ester cyclase encoded by Xantha-l in barley (Hordeum vulgare L.). The Xantha-l gene product (XanL) is a membrane-bound diiron monooxygenase, which requires additional soluble and membrane-bound components for its activity. XanL has so far been impossible to produce as an active recombinant protein for in vitro assays, which is required for deeper biochemical and structural analyses. In the present work, we performed cyclase assays with soluble and membrane-bound fractions of barley etioplasts. Addition of antibodies raised against ferredoxin or ferredoxin-NADPH oxidoreductase (FNR) inhibited assays, strongly suggesting that reducing electrons for the cyclase reaction involves ferredoxin and FNR. We further developed a completely recombinant cyclase assay. Expression of active XanL required co-expression with an additional protein, Ycf54. In vitro cyclase activity was obtained with recombinant XanL in combination with ferredoxin and FNR. Our experiment demonstrates that the cyclase is a ferredoxin-dependent enzyme. Ferredoxin is part of the photosynthetic electron-transport chain, which suggests that the cyclase reaction might be connected to photosynthesis under light conditions.


2012 ◽  
Vol 16 (05n06) ◽  
pp. 603-615 ◽  
Author(s):  
Martha Sibrian-Vazquez ◽  
Xiaoke Hu ◽  
Timothy J. Jensen ◽  
M. Graça H. Vicente

Five amphiphilic protoporphyrin IX-peptide conjugates bearing the sequences ATWLPPR, AAhexPQRRSARLSA and cERGDPhe conjugated via the propionic side chains, were synthesized and evaluated in vitro using two cell lines: human carcinoma HEp2 and human leukemia HL-60. All conjugates were found to have low dark- and photo-toxicities in both cell lines, and 3 to 10-fold higher accumulation was observed within HL-60 vs. HEp2 cells, depending on the nature of the peptide sequence. The preferential subcellular sites of localization for all conjugates were found to be the lysosomes in HEp2 cells, and the mitochondria in HL-60 cells, suggesting different mechanisms of cellular internalization.


2020 ◽  
Vol 477 (23) ◽  
pp. 4635-4654
Author(s):  
Milan Wiesselmann ◽  
Stefanie Hebecker ◽  
José M. Borrero-de Acuña ◽  
Manfred Nimtz ◽  
David Bollivar ◽  
...  

During bacteriochlorophyll a biosynthesis, the oxygen-independent conversion of Mg-protoporphyrin IX monomethyl ester (Mg-PME) to protochlorophyllide (Pchlide) is catalyzed by the anaerobic Mg-PME cyclase termed BchE. Bioinformatics analyses in combination with pigment studies of cobalamin-requiring Rhodobacter capsulatus mutants indicated an unusual radical S-adenosylmethionine (SAM) and cobalamin-dependent BchE catalysis. However, in vitro biosynthesis of the isocyclic ring moiety of bacteriochlorophyll using purified recombinant BchE has never been demonstrated. We established a spectroscopic in vitro activity assay which was subsequently validated by HPLC analyses and H218O isotope label transfer onto the carbonyl-group (C-131-oxo) of the isocyclic ring of Pchlide. The reaction product was further converted to chlorophyllide in the presence of light-dependent Pchlide reductase. BchE activity was stimulated by increasing concentrations of NADPH or SAM, and inhibited by S-adenosylhomocysteine. Subcellular fractionation experiments revealed that membrane-localized BchE requires an additional, heat-sensitive cytosolic component for activity. BchE catalysis was not sustained in chimeric experiments when a cytosolic extract from E. coli was used as a substitute. Size-fractionation of the soluble R. capsulatus fraction indicated that enzymatic activity relies on a specific component with an estimated molecular mass between 3 and 10 kDa. A structure guided site-directed mutagenesis approach was performed on the basis of a three-dimensional homology model of BchE. A newly established in vivo complementation assay was used to investigate 24 BchE mutant proteins. Potential ligands of the [4Fe-4S] cluster (Cys204, Cys208, Cys211), of SAM (Phe210, Glu308 and Lys320) and of the proposed cobalamin cofactor (Asp248, Glu249, Leu29, Thr71, Val97) were identified.


1993 ◽  
Vol 48 (3-4) ◽  
pp. 317-325 ◽  
Author(s):  
Stephen O. Duke ◽  
Mary V. Duke ◽  
Hee Jae Lee

Abstract Protoporphyrinogen oxidase (Protox) inhibitors and other compounds which block or stimulate the porphyrin pathway can cause sufficient levels of porphyrins to accumulate in plant tissues for severe photo dynamic damage to occur. The gross symptomology for all of these por­phyrinogenic herbicides is similar. Porphyrin accumulation induced by three porphyrinogenic herbicides acifluorfen (AF), δ-aminolevulinic acid (ALA), and 2,2′-dipyridyl (DY) was determined by in vivo spectrophotometry and HPLC methods. The averaged in vivo difference spec­tra between untreated and AF-treated (30 μᴍ for 20 h in darkness) yellow cucumber cotyledon discs approximated the absorption spectra of protoporphyrin IX (Proto IX). There was also an enhanced peak near 503 nm. Treatment of cotyledon discs with ALA alone generated a difference spectrum of protochlorophyllide (PChlide) in combination with Mg -Proto IX or Mg-Proto IX monomethyl ester (Mg-Proto IX ME). With ALA and AF in combination , the PChlide and Mg-Proto IX portions of the difference spectrum were reduced and the Proto IX peak and peak near 503 nm were increased. DY treatment yielded a difference spectrum with peaks approximating those of Proto IX and Mg-Proto IX ME , along with a peak near 503 nm . The presence of all porphyrins detected by in vivo spectrophotometry except for the 503 nm peak was confirmed with HPLC . Proto IX monomethyl ester was found by HPLC to be espe­cially elevated in treatments with AF. The in vivo 503 nm peak and in vitro studies with Protox-containing barley etioplast preparations suggest that p rototetrahydroporphyrin IX (an oxida­tion state intermediate between protoporphyrinogen IX and Proto IX) may accumulate under some conditions. These data demonstrate that rapid in vivo spectrophotometric studies can provide much of the qualitative results of HPLC studies and can confirm that in vitro results correspond with the in vivo situation.


2021 ◽  
Vol 14 (3) ◽  
pp. 229
Author(s):  
Yo Shinoda ◽  
Daitetsu Kato ◽  
Ryosuke Ando ◽  
Hikaru Endo ◽  
Tsutomu Takahashi ◽  
...  

5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.


2015 ◽  
Vol 112 (13) ◽  
pp. 3955-3960 ◽  
Author(s):  
Xinxing Zhang ◽  
Likui Feng ◽  
Satya Chinta ◽  
Prashant Singh ◽  
Yuting Wang ◽  
...  

Caenorhabditis elegans uses ascaroside pheromones to induce development of the stress-resistant dauer larval stage and to coordinate various behaviors. Peroxisomal β-oxidation cycles are required for the biosynthesis of the fatty acid-derived side chains of the ascarosides. Here we show that three acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, form different protein homo- and heterodimers with distinct substrate preferences. Mutations in the acyl-CoA oxidase genes acox-1, -2, and -3 led to specific defects in ascaroside production. When the acyl-CoA oxidases were expressed alone or in pairs and purified, the resulting acyl-CoA oxidase homo- and heterodimers displayed different side-chain length preferences in an in vitro activity assay. Specifically, an ACOX-1 homodimer controls the production of ascarosides with side chains with nine or fewer carbons, an ACOX-1/ACOX-3 heterodimer controls the production of those with side chains with seven or fewer carbons, and an ACOX-2 homodimer controls the production of those with ω-side chains with less than five carbons. Our results support a biosynthetic model in which β-oxidation enzymes act directly on the CoA-thioesters of ascaroside biosynthetic precursors. Furthermore, we identify environmental conditions, including high temperature and low food availability, that induce the expression of acox-2 and/or acox-3 and lead to corresponding changes in ascaroside production. Thus, our work uncovers an important mechanism by which C. elegans increases the production of the most potent dauer pheromones, those with the shortest side chains, under specific environmental conditions.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2005 ◽  
Vol 77 (6) ◽  
pp. 1059-1074 ◽  
Author(s):  
Axel G. Griesbeck ◽  
Tamer T. El-Idreesy ◽  
Anna Bartoschek

Photooxygenation involving the first excited singlet state of molecular oxygen is a versatile method for the generation of a multitude of oxy-functionalized target molecules often with high regio- and stereoselectivities. The efficiency of singlet-oxygen reactions is largely dependent on the nonradiative deactivation paths, mainly induced by the solvent and the substrate intrinsically. The intrinsic (physical) quenching properties as well as the selectivity-determining factors of the (chemical) quenching can be modified by adjusting the microenvironment of the reactive substrate. Tetraarylporphyrins or protoporphyrin IX were embedded in polystyrene (PS) beads and in polymer films or covalently linked into PS during emulsion polymerization. These polymer matrices are suitable for a broad variety of (solvent-free) photooxygenation reactions. One specific example discussed in detail is the ene reaction of singlet oxygen with chiral allylic alcohols yielding unsaturated β-hydroperoxy alcohols in (threo) diastereoselectivities, which depended on the polarity and hydrogen-bonding capacity of the polymer matrix. These products were applied for the synthesis of mono- and spirobicyclic 1,2,4-trioxanes, molecules that showed moderate to high antimalarial properties. Subsequent structure optimization resulted in in vitro activities that surpassed that of the naturally occurring sesquiterpene-peroxide artemisinin.


Sign in / Sign up

Export Citation Format

Share Document