Synthesis and cellular studies of PPIX-homing peptide conjugates

2012 ◽  
Vol 16 (05n06) ◽  
pp. 603-615 ◽  
Author(s):  
Martha Sibrian-Vazquez ◽  
Xiaoke Hu ◽  
Timothy J. Jensen ◽  
M. Graça H. Vicente

Five amphiphilic protoporphyrin IX-peptide conjugates bearing the sequences ATWLPPR, AAhexPQRRSARLSA and cERGDPhe conjugated via the propionic side chains, were synthesized and evaluated in vitro using two cell lines: human carcinoma HEp2 and human leukemia HL-60. All conjugates were found to have low dark- and photo-toxicities in both cell lines, and 3 to 10-fold higher accumulation was observed within HL-60 vs. HEp2 cells, depending on the nature of the peptide sequence. The preferential subcellular sites of localization for all conjugates were found to be the lysosomes in HEp2 cells, and the mitochondria in HL-60 cells, suggesting different mechanisms of cellular internalization.

2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


2019 ◽  
Vol 16 (6) ◽  
pp. 462-467
Author(s):  
Songtao Li ◽  
Hongling Zhao ◽  
Zhifeng Yin ◽  
Shuhua Deng ◽  
Yang Gao ◽  
...  

A series of new phenanthrene-based tylophorine derivatives (PBTs) were synthesized in good yield and their structures were characterized by 1H-NMR spectroscopy and ESI MS. In vitro antitumor activity of these compounds against five human carcinoma cell lines, including HCT116 (colorectal), BGC-823 (gastric), HepG-2 (hepatic), Hela (cervical) and H460 (lung) cells, was evaluated by MTT assay. Among these PBTs, compound 6b showed the highest antitumor activities against HCT116 and HepG-2 cell lines with IC50 values of 6.1 and 6.4 μM, respectively, which were comparable to that of adriamycin hydrochloride. The structure-activity relationship of these compounds was also discussed based on the results of their antitumor activity.


1996 ◽  
Vol 16 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Elisa A. Spillare ◽  
Aikou Okamoto ◽  
Koichi Hagiwara ◽  
Douglas J. Demetrick ◽  
Manuel Serrano ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1178
Author(s):  
Justyna Odrobińska ◽  
Magdalena Skonieczna ◽  
Dorota Neugebauer

The in vitro biochemical evaluation of the applicability of polymers carrying active substances (micelles and conjugates) was carried out. Previously designed amphiphilic graft copolymers with retinol or 4-n-butylresorcinol functionalized polymethacrylate backbone and poly(ethylene glycol) (PEG) side chains that included Janus-type heterografted copolymers containing both PEG and poly(ε-caprolactone) (PCL) side chains were applied as micellar carriers. The polymer self-assemblies were convenient to encapsulate arbutin (ARB) as the selected active substances. Moreover, the conjugates of PEG graft copolymers with ferulic acid (FA) or lipoic acid (LA) were also investigated. The permeability of released active substances through a membrane mimicking skin was evaluated by conducting transdermal tests in Franz diffusion cells. The biological response to new carriers with active substances was tested across cell lines, including normal human dermal fibroblasts (NHDF), human epidermal keratinocyte (HaCaT), as well as cancer melanoma (Me45) and metastatic human melanoma (451-Lu), for comparison. These polymer systems were safe and non-cytotoxic at the tested concentrations for healthy skin cell lines according to the MTT test. Cytometric evaluation of cell cycles as well as cell death defined by Annexin-V apoptosis assays and senescence tests showed no significant changes under action of the delivery systems, as compared to the control cells. In vitro tests confirmed the biochemical potential of these antioxidant carriers as beneficial components in cosmetic products, especially applied in the form of masks and eye pads.


1990 ◽  
Vol 111 (5) ◽  
pp. 2097-2108 ◽  
Author(s):  
K M Weidner ◽  
J Behrens ◽  
J Vandekerckhove ◽  
W Birchmeier

The generation of invasiveness in transformed cells represents an essential step of tumor progression. We have previously shown that MDCK epithelial cells, which are deprived of intracellular adhesion by the addition of anti-Arc-1/uvomorulin antibodies, become invasive for collagen gels and embryonal heart tissue (Behrens, J., M. M. Mareel, F. M. Van Roy, and W. Birchmeier. 1989. J. Cell Biol. 108: 2435-2447.). Here we examined whether invasiveness is also induced by scatter factor, which is known to dissociate epithelial cells (Stoker, M., E. Gherardi, M. Perryman, and J. Gray. 1987. Nature (Lond.). 327:239-242.). Scatter factor was purified to homogeneity from conditioned medium of human fibroblasts by heparin-Sepharose chromatography, followed by cation exchange chromatography, gel filtration, or preparative SDS gel electrophoresis. We found that scatter factor represents a 92,000 mol wt glycoprotein which, apparently, is converted by limited proteolysis into disulfide-linked 62,000 and 34/32,000 mol wt subunits. Reversed phase HPLC and sequence analysis of tryptic peptides confirmed the suggested molecular structure, and revealed further that scatter factor exhibits sequence similarities to hepatocyte growth factor and to plasminogen. Purified scatter factor in fact induces the invasiveness into collagen matrices of MDCK epithelial cells, and induces or promotes the invasiveness of a number of human carcinoma cell lines. Apparently, the effect on the human cells depends on their respective degree of differentiation, i.e., cell lines with a less pronounced epithelial phenotype were more susceptible to the factor. Scatter factor does not seem to influence synthesis, steady-state level, and phosphorylation of the cell adhesion molecule Arc-1/uvomorulin. Thus, scatter factor represents a clearly defined molecular species which induces, in vitro, the progression of epithelial cells to a more motile, i.e., invasive phenotype.


Radiology ◽  
1981 ◽  
Vol 139 (2) ◽  
pp. 485-487 ◽  
Author(s):  
R R Weichselbaum ◽  
J S Greenberger ◽  
A Schmidt ◽  
A Karpas ◽  
W C Moloney ◽  
...  

2002 ◽  
Vol 50 (6) ◽  
pp. 479-489 ◽  
Author(s):  
Ioannis A. Avramis ◽  
Garyfallia Christodoulopoulos ◽  
Atsushi Suzuki ◽  
Walter E. Laug ◽  
Ignacio Gonzalez-Gomez ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 448-448
Author(s):  
Shenghao Jin ◽  
Huiwu Zhao ◽  
Yan Yi ◽  
Yuji Nakata ◽  
Anna Kalota ◽  
...  

Abstract Abstract 448 The c-myb proto-oncogene was first identified as the cellular homologue of the v-myb oncogene carried by the avian leukemia viruses AMV, and E26. c-myb encodes a transcription factor, c-Myb, that is highly expressed in immature hematopoietic cells. In such primitive cells, c-Myb has been found to exert an important role in lineage fate selection, cell cycle progression, and differentiation of both myeloid, B, and T lymphoid progenitor cells. c-Myb is also highly expressed in many leukemia cells and on this basis has been implicated in leukemic transformation. Despite intensive study, a mechanisms based understanding for c-Myb's myriad effects on blood cell development has yet to be fully achieved though c-Myb's ability to interact with a variety of transcriptionally active co-factors, such as p300, CBP, and FLASH, as well as to modulate its own expression, have all been reported to contribute to its activities. Therefore, we undertook a series of biochemical, molecular, and clinical studies to further address c-Myb's role in leukemic hematopoiesis. Using in vitro translated proteins and nuclear extracts from leukemic cells in immunoprecipitation (IP) assays, we found that c-Myb is associated with MLL1, the SET1 proteins WDR5, RbBp5, and Ash2L, and menin, all of which form a complex with histone methyltransferase (HMT) activity. c-Myb associated with the MLL1 and SET1 proteins through menin, which served as an adapter protein by interacting (as previously shown) with the extreme amino terminus of the MLL1 protein, and, as we show, with a region around the c-Myb transactivation domain (aa 194-325). We demonstrated in vitro with purified proteins and an H3 peptide, that c-Myb contributed to the HMT activity of the MLL1 complex. In leukemia patients being treated with a c-myb targeted antisense oligodeoxynucleotide (ASODN), and in leukemic cell lines, silencing c-myb evoked a significant decrease in H3K4 methylation demonstrating biological relevance of this observation. The decrease in H3K4 methylation is the direct result of silencing c-myb and is not due to changes in cell proliferation, and could not be reproduced by silencing B-myb. Also, we confirmed that c-Myb is a downstream target of HoxA9, and Meis 1, but showed unexpectedly that leukemic blasts derived from the c-myb ASODN treated patients, and c-myb siRNA treated cell lines, decrease c-myb expression also led to a decrease in Hoxa9 and Meis1 expression. This suggested the presence of an autoregulatory feedback loop between c-Myb and HoxA9. This finding too was specific for c-myb and not associated with a block in proliferation or silencing B-myb. Finally, disrupting the c-Myb-MLL1 interaction impairs localization of MLL1 and menin on the Hoxa9 gene promoter, as well as the MLL-ENL induced transformation of normal murine bone marrow cells. In summary, our results bring new insights regarding c-Myb function in human hematopoietic cells, suggest new mechanisms whereby c-Myb may contribute to cell transformation, and suggest new therapeutic targets for the treatment of acute leukemia. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document