Ethanol and the peripheral benzodiazepine receptor: In vivo and in vitro experiments

1992 ◽  
Vol 23 (6) ◽  
pp. 1217-1219
Author(s):  
Daniel J. Calvo ◽  
Omar Tumilasci ◽  
Jorge H. Medina
Biochemistry ◽  
2004 ◽  
Vol 43 (38) ◽  
pp. 12315-12321 ◽  
Author(s):  
Gary Weisinger ◽  
Ela Kelly-Hershkovitz ◽  
Leo Veenman ◽  
Ilana Spanier ◽  
Svetlana Leschiner ◽  
...  

2018 ◽  
Vol 129 (5) ◽  
pp. 1000-1014 ◽  
Author(s):  
Chunyan Wang ◽  
Tanweer Datoo ◽  
Hailin Zhao ◽  
Lingzhi Wu ◽  
Akshay Date ◽  
...  

AbstractEditor’s PerspectiveWhat We Already Know about This TopicWhat This Article Tells Us That Is NewBackgroundSeveral factors within the perioperative period may influence postoperative metastatic spread. Dexmedetomidine and midazolam are widely used general anesthetics during surgery. The authors assessed their effects on human lung carcinoma (A549) and neuroglioma (H4) cell lines in vitro and in vivo.MethodsCell proliferation and migration were measured after dexmedetomidine (0.001 to 10 nM) or midazolam (0.01 to 400 μM) treatment. Expression of cell cycle and apoptosis markers were assessed by immunofluorescence. Mitochondrial membrane potential and reactive oxygen species were measured by JC-1 staining and flow cytometry. Antagonists atipamezole and flumazenil were used to study anesthetic mechanisms of action. Tumor burden after anesthetic treatment was investigated with a mouse xenograft model of lung carcinoma.ResultsDexmedetomidine (1 nM) promoted cell proliferation (2.9-fold in A549 and 2-fold in H4 cells vs. vehicle, P < 0.0001; n = 6), migration (2.2-fold in A549 and 1.9-fold in H4 cells vs. vehicle, P < 0.0001; n = 6), and upregulated antiapoptotic proteins in vitro. In contrast, midazolam (400 μM) suppressed cancer cell migration (2.6-fold in A549 cells, P < 0.0001; n = 4), induced apoptosis via the intrinsic mitochondrial pathway, decreased mitochondrial membrane potential, and increased reactive oxygen species expression in vitro—effects partly attributable to peripheral benzodiazepine receptor activation. Furthermore, midazolam significantly reduced tumor burden in mice (1.7-fold vs. control; P < 0.05; n = 6 per group).ConclusionsMidazolam possesses antitumorigenic properties partly mediated by the peripheral benzodiazepine receptor, whereas dexmedetomidine promotes cancer cell survival through signaling via the α2-adrenoceptor in lung carcinoma and neuroglioma cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3459-3459
Author(s):  
Richard A. Campbell ◽  
Eric Sanchez ◽  
Haiming Chen ◽  
Lauren Turker ◽  
Olivia Trac ◽  
...  

Abstract The peripheral benzodiazepine receptor (mPBR) appears to be a potential target to induce apoptosis in tumor cells. The expression of this receptor has been linked to a poor prognosis in cancer patients. PK11195 may represent a new, well-tolerated potent chemosensitizing agent that affects multiple resistance mechanisms within malignant cells. We have evaluated whether PK11195 inhibits multiple myeloma (MM) cell growth in vitro; and, furthermore, whether this drug can chemosensitize a melphalan resistant human MM tumor, LAGλ-1 (Campbell et al, International Journal of Oncology 2006), to arsenic trioxide (ATO) and melphalan using an in vivo SCID-hu model. The MM cell lines RPMI8226 and U266 were treated with varying concentrations of PK11195 (1 – 100 mM). After incubating with PK11195 for 24 hours, cell growth was measured by MTT assay. Those cells treated with PK11195 showed decreased proliferation at concentrations as low as 1 mM compared to the untreated cells. Next, we investigated the chemosensitizing effects of PK11195 using an in vivo model of human MM. To accomplish this, each immunodeficient (SCID) mouse was implanted with a 2.0 – 4.0 mm3 LAGλ-1 tumor fragment into the left superficial gluteal muscle. The tumors were allowed to grow for 14 days at which time human IgG levels were detectable in the mouse serum or when tumors became palpable (21 days) and mice were blindly assigned into treatment groups. PK11195 (10, 50 and 100 mg/kg) was administered via oral gavage once weekly when combined with melphalan and once daily five times per week when combined with ATO. Melphalan (3 mg/kg) was administered once weekly via intraperitoneal (i.p.) injection. ATO (1.25 mg/kg) was administered once daily five times per week via i.p. injection. Mice receiving the combination of PK11195 and melphalan (3 mg/kg) showed marked inhibition of tumor growth (PK11195 10 mg/kg, P = 0.03; PK11195 50 mg/kg, P = 0.02; PK11195 200 mg/kg, P < 0.01) compared to mice receiving no therapy. Animals treated with melphalan, as a single agent, did show minimal tumor growth inhibition and reduced paraprotein levels whereas mice treated with single agent PK11195 showed tumor growth similar to the control mice. Mice receiving the combination of PK11195 and low dose ATO (1.25 mg/kg) also showed inhibition of tumor growth (PK11195 200 mg/kg, P < 0.01) whereas treatment with either single agent PK11195 or ATO demonstrated growth similar to the control groups. Treatment with the highest dose of PK11195 (200 mg/kg) was not associated with any observed toxicity suggesting that high doses can be safely administered and are well tolerated. In this study, we showed PK11195 inhibits MM cell growth in vitro at very low concentrations and can chemosensitize drug resistant tumor cells in vivo at doses that have no observable toxicity. We are further evaluating PK11195 as a single agent and in combination therapy both in vitro and in vivo..


2020 ◽  
Vol 26 ◽  
Author(s):  
Grigory V. Mokrov ◽  
Olga A. Deeva ◽  
Tatiana A. Gudasheva

: In 2020, it is already 43 years since Braestrup and Squires discovered 18 kDa translocator protein (TSPO), known until 2006 as "peripheral benzodiazepine receptor". During this time the functions of this receptor which is located on the outer membrane of mitochondria were studied in detail. One of the key functions of TSPO is the transfer of cholesterol from the outer to the inner mitochondrial membrane, which is the limiting stage in the synthesis of neurosteroids. TSPO is also involved in the transport of porphyrins, mitochondrial respiration, the opening of mitochondrial pores, apoptosis and cell proliferation. This review presents current information on the structure of TSPO, the mechanism of its participation in neurosteroidogenesis, as well as endogenous and synthetic TSPO ligands. Particular emphasis is placed on the analysis of approaches to the design of synthetic ligands and their neuropsychotropic activity in vitro and in vivo. The presented review demonstrates the promise of constructing new neuropsychotropic drugs in the series of TSPO ligands.


2021 ◽  
Vol 09 (06) ◽  
pp. E918-E924
Author(s):  
Tomonori Yano ◽  
Atsushi Ohata ◽  
Yuji Hiraki ◽  
Makoto Tanaka ◽  
Satoshi Shinozaki ◽  
...  

Abstract Backgrounds and study aims Gel immersion endoscopy is a novel technique to secure the visual field during endoscopy. The aim of this study was to develop a dedicated gel for this technique. Methods To identify appropriate viscoelasticity and electrical conductivity, various gels were examined. Based on these results, the dedicated gel “OPF-203” was developed. Efficacy and safety of OPF-203 were evaluated in a porcine model. Results  In vitro experiments showed that a viscosity of 230 to 1900 mPa·s, loss tangent (tanδ) ≤ 0.6, and hardness of 240 to 540 N/cm2 were suitable. Ex vivo experiments showed electrical conductivity ≤ 220 μS/cm is appropriate. In vivo experiments using gastrointestinal bleeding showed that OPF-203 provided clear visualization compared to water. After electrocoagulation of gastric mucosa in OPF-203, severe coagulative necrosis was not observed in the muscularis but limited to the mucosa. Conclusions OPF-203 is useful for gel immersion endoscopy.


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


2013 ◽  
Vol 14 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Eun-Young Kim ◽  
Sang Soo Lee ◽  
Ji Hoon Shin ◽  
Soo Hyun Kim ◽  
Dong-Ho Shin ◽  
...  

1937 ◽  
Vol 37 (3) ◽  
pp. 471-473 ◽  
Author(s):  
J. Gordon ◽  
N. Wood

In earlier papers (Gordon, 1930) it was shown that congo red has an inactivating effect on serum complement, both haemolytic and bactericidal, and that this effect can be reversed by treating the serum and congo red mixture with charcoal, the charcoal removing the congo red and leaving the complement active again. A similar reversal of inactivation is obtained by using instead of the charcoal, heated serum (55° C. for 30 min.) or protein solutions. Later (Gordon, 1931), it was shown that congo red had an inactivating effect on the haemolysins of Streptococcus haemolyticus and B. welchii. The reversibility of this effect was not so easy to demonstrate as with complement. Charcoal had a destructive effect on the haemolysins and so could not be used. It was found, however, that when the concentration of congo red was just sufficient to neutralize the streptococcal haemolysin, the addition of cuprammonium artificial silk adsorbed the congo red and liberated the haemolysin. In the case of B. welchii this method of reversal was not suitable, as the artificial silk had a destructive effect on the haemolysin. Instead, reversibility was demonstrated by adding ox serum to the mixture of congo red and haemolysin. This brought about a redistribution of the congo red between the ox serum and the haemolysin and if the amount of congo red used had been only just sufficient to neutralize the haemolysin of B. welchii, then the haemolytic activity could again be demonstrated. Gordon and Robson (1933) showed that congo red interfered with the anaphylactic reaction tested both in vivo and in vitro, the guinea-pig uterus being used in the in vitro experiments, in which the inhibitory action of the dye was shown to be reversible. It was suggested that the congo red interfered with the entrance of antigen into the cell.


1993 ◽  
Vol 120 (2) ◽  
pp. 523-535 ◽  
Author(s):  
B E Symington ◽  
Y Takada ◽  
W G Carter

The colocalization of integrins alpha 2 beta 1 and alpha 3 beta 1 at intercellular contact sites of keratinocytes in culture and in epidermis suggests that these integrins may mediate intercellular adhesion (ICA). P1B5, an anti-alpha 3 beta 1 mAb previously reported to inhibit keratinocyte adhesion to epiligrin, was also found to induce ICA. Evidence that P1B5-induced ICA was mediated by alpha 2 beta 1 and alpha 3 beta 1 was obtained using both ICA assays and assays with purified, mAb-immobilized integrins. Selective binding of alpha 2 beta 1-coated beads to epidermal cells or plate-bound alpha 3 beta 1 was observed. This binding was inhibited by mAbs to integrin alpha 3, alpha 2, or beta 1 subunits and could be stimulated by P1B5. We also demonstrate a selective and inhibitable interaction between affinity-purified integrins alpha 2 beta 1 and alpha 3 beta 1. Finally, we show that expression of alpha 2 beta 1 by CHO fibroblasts results in the acquisition of collagen and alpha 3 beta 1 binding. Binding to both of these ligands is inhibited by P1H5, an anti-alpha 2 beta 1 specific mAb. Results of these in vitro experiments suggest that integrins alpha 2 beta 1 and alpha 3 beta 1 can interact and may do so to mediate ICA in vivo. Thus, alpha 3 beta 1 mediates keratinocyte adhesion to epiligrin and plays a second role in ICA via alpha 2 beta 1.


1994 ◽  
Vol 14 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Marc Laruelle ◽  
Anissa Abi-Dargham ◽  
Mohammed S. AI-Tikriti ◽  
Ronald M. Baldwin ◽  
Yolanda Zea-Ponce ◽  
...  

In vivo benzodiazepine receptor equilibrium dissociation constant, KD, and maximum number of binding sites, Bmax, were measured by single photon emission computerized tomography (SPECT) in three baboons. Animals were injected with a bolus followed by a constant i.v. infusion of the high affinity benzodiazepine ligand [123I]iomazenil. Plasma steady-state concentration and receptor–ligand equilibrium were reached within 2 and 3 h, respectively, and were sustained for the duration (4–9 h) of the experiments (n = 15). At the end of the experiments, a receptor saturating dose of flumazenil (0.2 mg/kg) was injected to measure nondisplaceable activity. Experiments were carried out at various levels of specific activity, and Scatchard analysis was performed for derivation of the KD (0.59 ± 0.09 n M) and Bmax (from 126 n M in the occipital region to 68 n M in the striatum). Two animals were killed and [125I]iomazenil Bmax and KD were measured at 22 and 37°C on occipital homogenate membranes. In vitro values of Bmax (114 ± 33 n M) and 37°C KD (0.66 ± 0.16 n M) were in good agreement with in vivo values measured by SPECT. This study demonstrates that SPECT can be used to quantify central neuroreceptors density and affinity.


Sign in / Sign up

Export Citation Format

Share Document