Hydrogen and fresh water production from sea water

1982 ◽  
Vol 7 (12) ◽  
pp. 919-923 ◽  
Author(s):  
A ELBASSUONI ◽  
J SHEFFIELD ◽  
T VEZIROGLU
2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Ali Khamdila ◽  
Santhi Wilastari ◽  
Agus Saleh

<p><em>Maintaining a Fresh Water Generator from the loss of vacuuming means getting the best fresh water production process. The balance of the heated substance and the heater measurement inside the evaporator could effect on the steam result or even could influence the steam process. There are many factors that could cause the loss or the decreasing of vacuuming when operating Fresh Water Generator, such as system leakage, the lack of sea water volume used for vacuuming, the balance of water ejector capability to maintain the steam volume inside Fresh Water Generator, the brine ejector capability to maintain the unused brine water and condension water being exhaust of Fresh Water Generator. </em></p><p><em><strong>Keywords</strong>: Condenser, Evaporator, Ejector, Ejector Pump</em></p><p>Menjaga serta mempertahankan kondisi Fresh Water Generator dari kevakuman merupakan hal yang harus selalu diperhatikan secara baik,dengan tujuan untuk mendapatkan proses produksi air tawar secara optimal. Pengaturan keseimbangan antara media untuk memanaskan dan media untuk dipanaskan didalam ruang evaporator berdampak pada hasil uap yang diproduksi ataupun justru berpengaruh terhadap proses penguapan. Banyak faktor penyebab hilangnya ataupun turunnya kevakuman pada saat pengoperasian fresh water generator,seperti kebocoran pada sistem,kurangnya kapasitas volume air laut yang digunakan oleh ejector pump untuk proses kevakuman, tidak seimbangnya kemampuan air ejector menjaga jumlah uap yang ada di dalam ruang fresh water generator , kemampuan brine ejector menjaga jumlah air brine dan air kondensasi yang tidak tertampung diruang kondensor untuk di buang keluar dari ruang fresh water generator.</p><p><strong>Kata kunci</strong> : Kondensor, Evaporator, Ejector, Ejector Pump</p>


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


2018 ◽  
Vol 3 (2) ◽  
pp. 38-47
Author(s):  
Muhammad Abdul Azis ◽  
Nuryake Fajaryati

This research aims to create a Reosquido desalination tool for evaporation methods using a microcontroller. This tool can control the temperature to speed up the evaporation process in producing fresh water. The method applied to Reosquido desalination uses Evaporation. The first process before evaporation is the detection of temperature in sea water that will be heated using an element heater. The second process of temperature measurement is to turn off and turn on the Arduino Uno controlled heater, when the temperature is less than 80 ° then the heater is on. The third process is evaporation during temperatures between 80 ° to 100 °, evaporation water sticks to the glass roof which is designed by pyramid. Evaporated water that flows into the reservoir is detected by its solubility TDS value. The fourth process is heater off when the temperature is more than 100 °. Based on the results of the testing, the desalination process using a microcontroller controlled heater can speed up the time up to 55% of the previous desalination process tool, namely manual desalination prsoes without using the heater element controlled by the temperature and controlled by a microcontroller which takes 9 hours. Produces fresh water as much as 30ml from 3000ml of sea water, so that it can be compared to 1: 100.


2020 ◽  
Vol 171 ◽  
pp. 115054
Author(s):  
Muhsen Al-Hrari ◽  
İlhan Ceylan ◽  
Khaled Nakoa ◽  
Alper Ergün

2014 ◽  
Vol 592-594 ◽  
pp. 2409-2415 ◽  
Author(s):  
S. Naga Sarada ◽  
Banoth Hima Bindu ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

In recent years with the exacerbation of energy shortage, water crisis increases around the world. With the continuous increase in the level of greenhouse gas emissions, the use of various sources of renewable energy is increasingly becoming important for sustainable development. Due to the rising oil price and environmental regulations, the demand of utilizing alternative power sources increased dramatically. Alternative energy and its applications have been heavily studied for the last decade. Energy and water are essential for mankind that influences the socioeconomic development of any nation. Pure water resources become more and more scarce every day as rivers, lakes wells and even seawater pollution rapidly increases. Solar energy is one promising solution to secure power and potable water to future generation. The process of distillation can be used to obtain fresh water from salty, brackish or contaminated water. Water is available in different forms such as sea water, underground water, surface water and atmospheric water. Clean water is essential for good health. The search for sustainable energy resources has emerged as one of the most significant and universal concerns in the 21st century. Solar energy conversion offers a cost effective alternative to our traditional usages. Solar energy is a promising candidate in many applications. Among the alternative energy sources used for electricity production, wind and solar energy systems have become more attractive in recent years. For areas where electricity was not available, stand alone wind and solar systems have been increasingly used. The shortage of drinking water in many countries throughout the world is a serious problem. Humankind has depended for ages on river, sea water and underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. To resolve this crisis, different methods of solar desalination have been used in many countries. Distillation is a well known thermal process for water purification, most importantly, water desalination. Most of the conventional water distillation processes are highly energy consuming and require fossil fuels as well as electric power for their operation. Single basin solar still is a popular solar device used for converting available brackish or waste water into potable water. Because of its lower productivity, it is not popularly used. Numbers of works are under taken to improve the productivity and efficiency of the solar still. There are large numbers of PCMs that melt and solidify at wide range of temperatures, making them attractive in a number of applications. PCMs have been widely used in latent heat thermal storage systems for heat pumps, solar engineering and spacecraft thermal control applications. The use of PCMs for heating and cooling applications for buildings has been investigated within the past decade. The experimental results computed in the field of water distillation process using solar energy in the presence of energy storage materials sodium sulphate and sodium acetate are discussed in this paper. Keywords: solar energy, saline water, distillation, phase change material.


1996 ◽  
Vol 199 (11) ◽  
pp. 2467-2475 ◽  
Author(s):  
M Vijayan ◽  
J Morgan ◽  
T Sakamoto ◽  
E Grau ◽  
G Iwama

We tested the hypothesis that nutritional state affects seawater acclimation by transferring either fed or food-deprived (2 weeks) male tilapia (Oreochromis mossambicus) from fresh water to full-strength sea water. Food-deprivation resulted in a significant increase in plasma concentrations of Na+, Cl-, cortisol, glucose, total amino acid, glutamate, serine and alanine, and in hepatic pyruvate kinase (PK) and lactate dehydrogenase (LDH) activities, whereas the prolactin-188 to prolactin-177 ratio (tPRL188:tPRL177) and plasma prolactin-188 (tPRL188), lactate, arginine and hepatic glycogen content and hepatic alanine aminotransferase (AlaAT) and 3-hydroxyacyl-Coenzyme A dehydrogenase (HOAD) activities were lower than in the fed group. Seawater transfer significantly increased the tPRL188:tPRL177 ratio and plasma concentrations of Na+, Cl-, K+, growth hormone (GH), glucose, aspartate, tyrosine, alanine, methionine, phenylalanine, leucine, isoleucine and valine levels as well as gill Na+/K+-ATPase activity and hepatic PK and LDH activities, whereas plasma tPRL177, tPRL188, glycine and lysine concentrations were significantly lower than in fish retained in fresh water. There was a significant interaction between nutritional state and salinity that affected the tPRL188:tPRL177 ratio and plasma concentrations of Cl-, GH, glucose, aspartate, tyrosine, serine, alanine, glycine, arginine and hepatic PK, LDH, AlaAT, aspartate aminotransferase, glutamate dehydrogenase and HOAD activities. These results, taken together, indicate that food-deprived fish did not regulate their plasma Cl- levels, despite an enhancement of plasma hormonal and metabolic responses in sea water. Our study also suggests the possibility that plasma prolactin and essential amino acids may be playing an important role in the seawater acclimation process in tilapia.


Author(s):  
OO Sinitsyna ◽  
VV Turbinsky ◽  
TM Ryashentseva ◽  
EP Lavrik

Background. Uneven distribution of fresh water sources on the land surface encourages a search for effective techniques of potable water preparation by desalination of seawater. Hygienic issues of such desalination methods as distillation, reverse osmosis, electrodialysis, and ion exchange have been investigated by now and appropriate limitations, requirements, and additional measures to ensure safety of desalinated drinking water have been established. Objective. To summarize and systematize the results of studying characteristics of various methods of seawater desalination for its further use for drinking and household purposes. Materials and methods. We conducted a systematic review of studies published in Russian and in English, found in the PubMed and Web of Science databases, and selected 40 literary sources containing an empirical assessment of effectiveness of seawater desalination and preparation of drinking water. We also scrutinized regulatory documents and guidelines of domestic sanitary legislation. The research results were systematized by the main desalination methods. Results and discussion. We established that the use of seawater for the preparation of fresh water for drinking and household purposes is becoming increasingly widespread around the world. Drinking water obtained from seawater, in all cases, requires additional treatment and measures to optimize its mineral composition and protect against microorganisms. Conclusion. The main challenges of ensuring sanitary and epidemiological wellbeing of the population when using desalinated seawater for drinking and household purposes include selection of a source, arrangement of sites of water intake properly protected from natural and man-made pollution, substantiation of techniques and modes of preliminary preparation of source seawater adequate to its composition, basic desalination, ensuring safety of products of destruction and migration of toxic substances from reagents and materials of desalination plants, additional conditioning with the necessary elements and disinfection of the prepared water, as well as environmental protection from desalination waste.


Sign in / Sign up

Export Citation Format

Share Document