Hygienic Aspects of the Use of Desalinated Sea Water for Drinking and Household Purposes: A Literature Review

Author(s):  
OO Sinitsyna ◽  
VV Turbinsky ◽  
TM Ryashentseva ◽  
EP Lavrik

Background. Uneven distribution of fresh water sources on the land surface encourages a search for effective techniques of potable water preparation by desalination of seawater. Hygienic issues of such desalination methods as distillation, reverse osmosis, electrodialysis, and ion exchange have been investigated by now and appropriate limitations, requirements, and additional measures to ensure safety of desalinated drinking water have been established. Objective. To summarize and systematize the results of studying characteristics of various methods of seawater desalination for its further use for drinking and household purposes. Materials and methods. We conducted a systematic review of studies published in Russian and in English, found in the PubMed and Web of Science databases, and selected 40 literary sources containing an empirical assessment of effectiveness of seawater desalination and preparation of drinking water. We also scrutinized regulatory documents and guidelines of domestic sanitary legislation. The research results were systematized by the main desalination methods. Results and discussion. We established that the use of seawater for the preparation of fresh water for drinking and household purposes is becoming increasingly widespread around the world. Drinking water obtained from seawater, in all cases, requires additional treatment and measures to optimize its mineral composition and protect against microorganisms. Conclusion. The main challenges of ensuring sanitary and epidemiological wellbeing of the population when using desalinated seawater for drinking and household purposes include selection of a source, arrangement of sites of water intake properly protected from natural and man-made pollution, substantiation of techniques and modes of preliminary preparation of source seawater adequate to its composition, basic desalination, ensuring safety of products of destruction and migration of toxic substances from reagents and materials of desalination plants, additional conditioning with the necessary elements and disinfection of the prepared water, as well as environmental protection from desalination waste.

2014 ◽  
Vol 4 (2) ◽  
pp. 22
Author(s):  
Alif Noor Anna

The information of rain water quality in Indonesia is rarely recorded, where as it is important for the region in which the source of fresh water is unavailable. Rain water composition is mostly ascertained by water vapour and ions which are available in the atmosphere during vapouration. In fact the rain water composition of coast region is sea water like and rain water chemical composition of urban are then become HNO3 and HSO4, while rain water of active vulcanic region eventuality has a high sulphur-wombed so that its quality sulphuric-acid. For the region in which the source of fresh water is unavailable the rain water is previously sterilized. Sterilization is consecutively done by adding salts, killing all bacteria, spores, and filltering.


2021 ◽  
Vol 13 (17) ◽  
pp. 9552
Author(s):  
Muna Hindiyeh ◽  
Aiman Albatayneh ◽  
Rashed Altarawneh ◽  
Mustafa Jaradat ◽  
Murad Al-Omary ◽  
...  

This work suggests a solution for preventing/eliminating the predicted Sea Level Rise (SLR) by seawater desalination and storage through a large number of desalination plants distributed worldwide; it also comprises that the desalinated seawater can resolve the global water scarcity by complete coverage for global water demand. Sea level rise can be prevented by desalinating the additional water accumulated into oceans annually for human consumption, while the excess amount of water can be stored in dams and lakes. It is predicted that SLR can be prevented by desalination plants. The chosen desalination plants for the study were Multi-Effect Desalination (MED) and Reverse Osmosis (RO) plants that are powered by renewable energy using wind and solar technologies. It is observed that the two main goals of the study are fulfilled when preventing an SLR between 1.0 m and 1.3 m by 2100 through seawater desalination, as the amount of desalinated water within that range can cover the global water demand while being economically viable.


1968 ◽  
Vol 49 (2) ◽  
pp. 325-339 ◽  
Author(s):  
G. L. FLETCHER ◽  
W. N. HOLMES

1. Intake of food, water and electrolyte by ducks maintained on fresh water and on hypertonic saline were measured over periods up to several months. 2. Transfer to saline approximately equivalent to 60% sea water was followed during the first 24 hr. by a sharp rise and fall in the plasma concentrations of sodium and chloride, which thereafter remained similar to the concentrations found in the freshwater-maintained birds. 3. Transfer to saline equivalent to 100% sea water resulted in a rise in these concentrations during the first 10 hr., which continued for a period up to 14 days, after which the birds either died or became unhealthy. 4. Upon transfer to saline drinking water (284 mM/l. Na+, 6.0 mM/l. K+) there was a gradual loss of body weight accompanied by a reduction in the food and water intake. Body weights tended to become stable after about 3 weeks, but some individuals continued to lose weight while others regained what they had lost. 5. When the concentration of sodium chloride in the drinking water exceeded 143 mM/l. the amount of sodium chloride ingested remained constant. Thus there was progressive decline in the volume of water drunk as the concentration increased. It would appear therefore that the saline-adapted duck possessed some mechanism whereby the daily intake of sodium chloride was regulated. 6. The cloacal output from saline-adapted ducks over a 24 hr. period showed that only 10% of the ingested sodium was excreted via this pathway as compared with over 70% of the ingested potassium. Most of the sodium appeared to be excreted via the nasal glands. 7. The possible interactions between the renal and extra-renal excretory pathways in the maintenance of homeostasis during adaptation to diets including hypertonic saline or seawater are discussed.


The problem of ensuring an adequate supply of good drinking water during lengthy voyages at sea is one that has received much attention through the ages. In particular the preparation of fresh water from seawater has been frequently attempted : it is mentioned by Pliny, and even receives consideration to-day. During the sixteenth, seventeenth and eighteenth centuries when so much enterprise was directed to the discovery of new worlds, navigators were put to much trouble to maintain supplies of drinking water of reasonable quality. It is understandable that any invention capable of satisfying this need would be of inestimable benefit ; that Robert Boyle should have taken an interest in the matter is not surprising. In 1674 he published a tract entitled Observations and Experiments about the Saltness of the Sea in which he reviewed past speculations on the cause of the sea’s salinity ; gave his own views on this subject ; referred to the difficulty experienced by seamen in maintaining fresh water supplies; dealt with the preparation of fresh water from sea-water by distillation, mentioning that this process had already been used aboard ship under conditions of extreme necessity by the navigator Sir Richard Hawkins; and finally reported the results of his own hydrostatical and chemical examination of sea-water.


1990 ◽  
Vol 152 (1) ◽  
pp. 505-519 ◽  
Author(s):  
PETER GREENAWAY ◽  
H. H. TAYLOR ◽  
S. MORRIS

Primary urine is formed by filtration in the antennal organ of Birgus latro L. Urine isosmotic with the haemolymph is released into the anterior branchial chambers where substantial reabsorption of water and ions may occur. Some of the branchial fluid is ingested and the remainder (final excretory fluid, P) is released. Crabs supplied with fresh water have a low drinking rate (1.82 ml 100 g−1 day−1). Primary urine is partially reabsorbed (27%) in the antennal organ and urine flow (4.48 ml 100 g−1 day−1) is significantly lower than filtration rate (5.77 ml 100 g−1 day−1). The volume of P released is small in crabs drinking fresh water (0.45 ml 100 g−1 day−1) and the fluid is dilute (≈25 mmol l−1 NaCl). The difference between P flow and drinking rate (1.37 ml 100 g−1 day−1) represents evaporative and faecal water losses. Provision of saline drinking water (300, 600 or 1000 mosmol kg−1 sea water) doubles rates of drinking, filtration and urine flow and increases P flow fourfold. Evaporative/faecal water loss remains constant. Reabsorption of salts from the P rapidly decreases when saline media are provided for drinking.


Geophysics ◽  
1969 ◽  
Vol 34 (4) ◽  
pp. 584-600 ◽  
Author(s):  
Adel A. R. Zohdy ◽  
Dallas B. Jackson

Forty‐five resistivity soundings, using Schlumberger and equatorial dipole electrode configurations, were made on the islands of Oahu and Hawaii to determine the applicability of direct current resistivity methods for locating freshwater aquifers in the State of Hawaii. The soundings were made on the northwestern part of the island of Oahu near the town of Waialua and on the island of Hawaii on the “saddle” area near Pohakuloa and Humuula. Interpretation of 32 sounding curves obtained on the island of Oahu indicates that it is possible to correlate five stratigraphic units underlain by a vesicular basalt basement and that the determination of the approximate depth to the fresh‐water‐saline‐water interface within the basalt is feasible. Two of these Schlumberger soundings with electrode spacings [Formula: see text] reaching 6000 ft yielded sounding curves of the maximum and minimum types whose terminal branches asymptotically approach a resistivity of about 30 ohm‐m, which is believed to be the true resistivity of basalt saturated with sea water. Near the town of Waialua the aquifer is a coral zone as well as parts of the weathered vesicular basalt basement. On the island of Hawaii, near Pohakuloa, an exploratory well drilled in basalt to a depth of 1001 ft (prior to the resistivity survey) proved to be dry. Interpretation of thirteen deep soundings made with Schlumberger and equatorial arrays suggests that the minimum depth to a conductive layer, which may represent basalt saturated with fresh water, is about 2700 ft below land surface. The groundwater appears to be dike impounded.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Ryo Makabe ◽  
Tetsuro Ueyama ◽  
Hideyuki Sakai ◽  
Akihiko Tanioka

The development of renewable energy technologies is of global importance. To realize a sustainable society, fossil-resource-independent technologies, such as solar- and wind-power generation, should be widely adopted. Pressure retarded osmosis (PRO) is one such potential renewable energy technology. PRO requires salt water and fresh water, both of which can be found at seawater desalination plants. The total power generation capacity of PRO, using concentrated seawater and fresh water, is 3 GW. A large amount of energy is required for seawater desalination; therefore, the introduction of renewable energy should be prioritized. Kyowakiden Industry Co., Ltd., has been working on introducing PRO to seawater desalination plants since 2001 and is attracting attention for its ongoing PRO pilot plant with a scale of 460 m3/d, using concentrated seawater and treated sewage water. In this study, we evaluated the feasibility of introducing PRO in existing desalination plants. The feasibility was examined based on technology, operation, and economy. Based on the number of seawater desalination plants in each country and the electricity charges, it was determined whether the introduction of PRO would be viable.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
V.K. YADAV ◽  
SONAM SHARMA ◽  
A.K. SRIVASTAVA ◽  
P.K. KHARE

Ponds are an important fresh water critical ecosystem for plants and animals providing goods and services including food, fodder, fish, irrigation, hydrological cycle, shelter, medicine, culture, aesthetic and recreation. Ponds cover less than 2 percent of worlds land surface. Ponds are important source of fresh water for human use. These are threatened by urbanization, industrialization, over exploitation, fragmentation, habitat destruction, pollution, illegal capturing of land and climate changes. These above factors have been destroying ponds very rapidly putting them in danger of extinction of a great number of local biodiversity. It is necessary to formulate a correct conservation strategy for pond restoration in order to meet the growing needs of fresh water by increasing the human population. Some measures have been compiled and proposed in the present review.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


2018 ◽  
Vol 3 (2) ◽  
pp. 38-47
Author(s):  
Muhammad Abdul Azis ◽  
Nuryake Fajaryati

This research aims to create a Reosquido desalination tool for evaporation methods using a microcontroller. This tool can control the temperature to speed up the evaporation process in producing fresh water. The method applied to Reosquido desalination uses Evaporation. The first process before evaporation is the detection of temperature in sea water that will be heated using an element heater. The second process of temperature measurement is to turn off and turn on the Arduino Uno controlled heater, when the temperature is less than 80 ° then the heater is on. The third process is evaporation during temperatures between 80 ° to 100 °, evaporation water sticks to the glass roof which is designed by pyramid. Evaporated water that flows into the reservoir is detected by its solubility TDS value. The fourth process is heater off when the temperature is more than 100 °. Based on the results of the testing, the desalination process using a microcontroller controlled heater can speed up the time up to 55% of the previous desalination process tool, namely manual desalination prsoes without using the heater element controlled by the temperature and controlled by a microcontroller which takes 9 hours. Produces fresh water as much as 30ml from 3000ml of sea water, so that it can be compared to 1: 100.


Sign in / Sign up

Export Citation Format

Share Document