Biogenesis and regulation of the Vibrio cholerae toxin-coregulated pilus: analogies to other virulence factor secretory systems

Gene ◽  
1993 ◽  
Vol 126 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Melissa R. Kaufman ◽  
Carolyn E. Shaw ◽  
Ian D. Jones ◽  
Ronald K. Taylor
mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Ryan W. Bogard ◽  
Bryan W. Davies ◽  
John J. Mekalanos

ABSTRACTLysR-type transcriptional regulators (LTTRs) are the largest, most diverse family of prokaryotic transcription factors, with regulatory roles spanning metabolism, cell growth and division, and pathogenesis. Using a sequence-defined transposon mutant library, we screened a panel ofV. choleraeEl Tor mutants to identify LTTRs required for host intestinal colonization. Surprisingly, out of 38 LTTRs, only one severely affected intestinal colonization in the suckling mouse model of cholera: the methionine metabolism regulator, MetR. Genetic analysis of genes influenced by MetR revealed thatglyA1andmetJwere also required for intestinal colonization. Chromatin immunoprecipitation of MetR and quantitative reverse transcription-PCR (qRT-PCR) confirmed interaction with and regulation ofglyA1, indicating that misregulation ofglyA1is likely responsible for the colonization defect observed in themetRmutant. TheglyA1mutant was auxotrophic for glycine but exhibited wild-type trimethoprim sensitivity, making folate deficiency an unlikely cause of its colonization defect. MetJ regulatory mutants are not auxotrophic but are likely altered in the regulation of amino acid-biosynthetic pathways, including those for methionine, glycine, and serine, and this misregulation likely explains its colonization defect. However, mutants defective in methionine, serine, and cysteine biosynthesis exhibited wild-type virulence, suggesting that these amino acids can be scavenged in vivo. Taken together, our results suggest that glycine biosynthesis may be required to alleviate an in vivo nutritional restriction in the mouse intestine; however, additional roles for glycine may exist. Irrespective of the precise nature of this requirement, this study illustrates the importance of pathogen metabolism, and the regulation thereof, as a virulence factor.IMPORTANCEVibrio choleraecontinues to be a severe cause of morbidity and mortality in developing countries. Identification ofV. choleraefactors critical to disease progression offers the potential to develop or improve upon therapeutics and prevention strategies. To increase the efficiency of virulence factor discovery, we employed a regulator-centric approach to multiplex our in vivo screening capabilities and allow whole regulons inV. choleraeto be interrogated for pathogenic potential. We identified MetR as a new virulence regulator and serine hydroxymethyltransferase GlyA1 as a new MetR-regulated virulence factor, both required byV. choleraeto colonize the infant mouse intestine. Bacterial metabolism is a prerequisite to virulence, and current knowledge of in vivo metabolism of pathogens is limited. Here, we expand the known role of amino acid metabolism and regulation in virulence and offer new insights into the in vivo metabolic requirements ofV. choleraewithin the mouse intestine.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1054-1062 ◽  
Author(s):  
Amit Vikram ◽  
Vanessa M. Ante ◽  
X. Renee Bina ◽  
Qin Zhu ◽  
Xinyu Liu ◽  
...  

Vibrio cholerae has been shown to produce a cyclic dipeptide, cyclo(phenylalanine–proline) (cFP), that functions to repress virulence factor production. The objective of this study was to determine if heterologous cyclic dipeptides could repress V. cholerae virulence factor production. To that end, three synthetic cyclic dipeptides that differed in their side chains from cFP were assayed for virulence inhibitory activity in V. cholerae. The results revealed that cyclo(valine–valine) (cVV) inhibited virulence factor production by a ToxR-dependent process that resulted in the repression of the virulence regulator aphA. cVV-dependent repression of aphA was found to be independent of known aphA regulatory genes. The results demonstrated that V. cholerae was able to respond to exogenous cyclic dipeptides and implicated the hydrophobic amino acid side chains on both arms of the cyclo dipeptide scaffold as structural requirements for inhibitory activity. The results further suggest that cyclic dipeptides have potential as therapeutics for cholera treatment.


2018 ◽  
Vol 14 (1) ◽  
pp. e1006804 ◽  
Author(s):  
X. Renee Bina ◽  
Mondraya F. Howard ◽  
Dawn L. Taylor-Mulneix ◽  
Vanessa M. Ante ◽  
Dillon E. Kunkle ◽  
...  

2003 ◽  
Vol 71 (2) ◽  
pp. 1020-1025 ◽  
Author(s):  
Shah M. Faruque ◽  
M. Kamruzzaman ◽  
Ismail M. Meraj ◽  
Nityananda Chowdhury ◽  
G. Balakrish Nair ◽  
...  

ABSTRACT The major virulence factors of toxigenic Vibrio cholerae are cholera toxin (CT), which is encoded by a lysogenic bacteriophage (CTXΦ), and toxin-coregulated pilus (TCP), an essential colonization factor which is also the receptor for CTXΦ. The genes for the biosynthesis of TCP are part of a larger genetic element known as the TCP pathogenicity island. To assess their pathogenic potential, we analyzed environmental strains of V. cholerae carrying genetic variants of the TCP pathogenicity island for colonization of infant mice, susceptibility to CTXΦ, and diarrheagenicity in adult rabbits. Analysis of 14 environmental strains, including 3 strains carrying a new allele of the tcpA gene, 9 strains carrying a new allele of the toxT gene, and 2 strains carrying conventional tcpA and toxT genes, showed that all strains colonized infant mice with various efficiencies in competition with a control El Tor biotype strain of V. cholerae O1. Five of the 14 strains were susceptible to CTXΦ, and these transductants produced CT and caused diarrhea in adult rabbits. These results suggested that the new alleles of the tcpA and toxT genes found in environmental strains of V. cholerae encode biologically active gene products. Detection of functional homologs of the TCP island genes in environmental strains may have implications for understanding the origin and evolution of virulence genes of V. cholerae.


2003 ◽  
Vol 71 (6) ◽  
pp. 2993-2999 ◽  
Author(s):  
Shah M. Faruque ◽  
Jun Zhu ◽  
Asadulghani ◽  
M. Kamruzzaman ◽  
John J. Mekalanos

ABSTRACT The major virulence factors of toxigenic Vibrio cholerae are cholera toxin, which is encoded by a lysogenic filamentous bacteriophage (CTXΦ), and toxin-coregulated pilus (TCP), an essential colonization factor that is also the receptor for CTXΦ. The genes involved in the biosynthesis of TCP reside in a pathogenicity island, which has been reported to correspond to the genome of another filamentous phage (designated VPIΦ) and to encode functions necessary for the production of infectious VPIΦ particles. We examined 46 V. cholerae strains having diverse origins and carrying different genetic variants of the TCP island for the production of the VPIΦ and CTXΦ in different culture conditions, including induction of prophages with mitomycin C and UV irradiation. Although 9 of 10 V. cholerae O139 strains and 12 of 15 toxigenic El Tor strains tested produced extracellular CTXΦ, none of the 46 TCP-positive strains produced detectable VPIΦ in repeated assays, which detected as few as 10 particles of a control CTX phage per ml. These results contradict the previous report regarding VPIΦ-mediated horizontal transfer of the TCP genes and suggest that the TCP island is unable to support the production of phage particles. Further studies are necessary to understand the mechanism of horizontal transfer of the TCP island.


2011 ◽  
Vol 79 (7) ◽  
pp. 2941-2949 ◽  
Author(s):  
Sarah T. Miyata ◽  
Maya Kitaoka ◽  
Teresa M. Brooks ◽  
Steven B. McAuley ◽  
Stefan Pukatzki

ABSTRACTThe type VI secretion system (T6SS) is recognized as an important virulence mechanism in several Gram-negative pathogens. InVibrio cholerae, the causative agent of the diarrheal disease cholera, a minimum of three gene clusters—one main cluster and two auxiliary clusters—are required to form a functional T6SS apparatus capable of conferring virulence toward eukaryotic and prokaryotic hosts. Despite an increasing understanding of the components that make up the T6SS apparatus, little is known about the regulation of these genes and the gene products delivered by this nanomachine. VasH is an important regulator of theV. choleraeT6SS. Here, we present evidence that VasH regulates the production of a newly identified protein, VasX, which in turn requires a functional T6SS for secretion. Deletion ofvasXdoes not affect export or enzymatic function of the structural T6SS proteins Hcp and VgrG-1, suggesting that VasX is dispensable for the assembly of the physical translocon complex. VasX localizes to the bacterial membrane and interacts with membrane lipids. We present VasX as a novel virulence factor of the T6SS, as aV. choleraemutant lackingvasXexhibits a phenotype of attenuated virulence towardDictyostelium discoideum.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Ok S. Shin ◽  
Vincent C. Tam ◽  
Masato Suzuki ◽  
Jennifer M. Ritchie ◽  
Roderick T. Bronson ◽  
...  

ABSTRACTCholera is a severe diarrheal disease typically caused by O1 serogroup strains ofVibrio cholerae. The pathogenicity of all pandemicV. choleraeO1 strains relies on two critical virulence factors: cholera toxin, a potent enterotoxin, and toxin coregulated pilus (TCP), an intestinal colonization factor. However, certain non-O1, non-O139V. choleraestrains, such as AM-19226, do not produce cholera toxin or TCP, yet they still cause severe diarrhea. The molecular basis for the pathogenicity of non-O1, non-O139V. choleraehas not been extensively characterized, but many of these strains encode related type III secretion systems (TTSSs). Here, we used infant rabbits to assess the contribution of the TTSS to non-O1, non-O139V. choleraepathogenicity. We found that all animals infected with wild-type AM-19226 developed severe diarrhea even more rapidly than rabbits infected withV. choleraeO1. UnlikeV. choleraeO1 strains, which do not damage the intestinal epithelium in rabbits or humans, AM-19226 caused marked disruptions of the epithelial surface in the rabbit small intestine. TTSS proved to be essential for AM-19226 virulence in infant rabbits; an AM-19226 derivative deficient for TTSS did not elicit diarrhea, colonize the intestine, or induce pathological changes in the intestine. Deletion of either one of the two previously identified or two newly identified AM-19226 TTSS effectors reduced but did not eliminate AM-19226 pathogenicity, suggesting that at least four effectors contribute to this strain’s virulence. In aggregate, our results suggest that the TTSS-dependent virulence in non-O1, non-O139V. choleraerepresents a new type of diarrheagenic mechanism.IMPORTANCECholera, which is caused byVibrio cholerae, is an important cause of diarrheal disease in many developing countries. The mechanisms of virulence of nonpandemic strains that can cause a diarrheal illness are poorly understood. AM-19226, like several other pathogenic, nonpandemicV. choleraestrains, carries genes that encode a type III secretion system (TTSS), but not cholera toxin (CT) or toxin coregulated pilus (TCP). In this study, we used infant rabbits to study AM-19226 virulence. Infant rabbits orally inoculated with this strain rapidly developed a fatal diarrheal disease, which was accompanied by marked disruptions of the intestinal epithelium. This strain’s TTSS proved essential for its pathogenicity, and there was no diarrhea, intestinal pathology, or colonization in rabbits infected with a TTSS mutant. The effector proteins translocated by the TTSS all appear to contribute to AM-19226 virulence. Thus, our study provides insight intoin vivomechanisms by which a novel TTSS contributes to diarrheal disease caused by nonpandemic strains ofV. cholerae.


Sign in / Sign up

Export Citation Format

Share Document