The human gene encoding the largest subunit of RNA polymerase II

Gene ◽  
1995 ◽  
Vol 159 (2) ◽  
pp. 285-286 ◽  
Author(s):  
Kazuei Mita ◽  
Hideo Tsuji ◽  
Mitsuoki Morimyo ◽  
Ei-ichi Takahashi ◽  
Mitsuru Nenoi ◽  
...  
Genetics ◽  
1992 ◽  
Vol 131 (4) ◽  
pp. 895-903
Author(s):  
M A Mortin ◽  
R Zuerner ◽  
S Berger ◽  
B J Hamilton

Abstract Specific mutations in the gene encoding the largest subunit of RNA polymerase II (RpII215) cause a partial transformation of a structure of the third thoracic segment, the capitellum, into the analogous structure of the second thoracic segment, the wing. This mutant phenotype is also caused by genetically reducing the cellular concentration of the transcription factor Ultrabithorax (Ubx). To recover mutations in the 140,000-D second-largest subunit of RNA polymerase II (RpII140) and determine whether any can cause a mutant phenotype similar to Ubx we attempted to identify all recessive-lethal mutable loci in a 340-kilobase deletion including this and other loci. One of the 13 complementation groups in this region encodes RpII140. Three RpII140 alleles cause a transformation of capitellum to wing but unlike RpII215 alleles, only when the concentration of Ubx protein is reduced by mutations in Ubx.


2012 ◽  
Vol 23 (21) ◽  
pp. 4297-4312 ◽  
Author(s):  
Alicia García ◽  
Alejandro Collin ◽  
Olga Calvo

The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3′-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5–Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5–Rpb1 complex levels and consequently transcription elongation rate.


1987 ◽  
Vol 7 (2) ◽  
pp. 586-594 ◽  
Author(s):  
M S Bartolomei ◽  
J L Corden

RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene.


1990 ◽  
Vol 10 (12) ◽  
pp. 6123-6131 ◽  
Author(s):  
J Archambault ◽  
K T Schappert ◽  
J D Friesen

RNA polymerase II (RNAPII) is a complex multisubunit enzyme responsible for the synthesis of pre-mRNA in eucaryotes. The enzyme is made of two large subunits associated with at least eight smaller polypeptides, some of which are common to all three RNA polymerase species. We have initiated a genetic analysis of RNAPII by introducing mutations in RPO21, the gene encoding the largest subunit of RNAPII in Saccharomyces cerevisiae. We have used a yeast genomic library to isolate plasmids that can suppress a temperature-sensitive mutation in RPO21 (rpo21-4), with the goal of identifying gene products that interact with the largest subunit of RNAPII. We found that increased expression of wild-type RPO26, a single-copy, essential gene encoding a 155-amino-acid subunit common to RNAPI, RNAPII, and RNAPIII, suppressed the rpo21-4 temperature-sensitive mutation. Mutations were constructed in vitro that resulted in single amino acid changes in the carboxy-terminal portion of the RPO26 gene product. One temperature-sensitive mutation, as well as some mutations that did not by themselves generate a phenotype, were lethal in combination with rpo21-4. These results support the idea that the RPO26 and RPO21 gene products interact.


2019 ◽  
Vol 105 (4) ◽  
pp. 677-688 ◽  
Author(s):  
Jason A. Watts ◽  
Joshua Burdick ◽  
Jillian Daigneault ◽  
Zhengwei Zhu ◽  
Christopher Grunseich ◽  
...  

2006 ◽  
Vol 26 (21) ◽  
pp. 7942-7952 ◽  
Author(s):  
Jianyong Zhang ◽  
Tsutomu Ohta ◽  
Atsushi Maruyama ◽  
Tomonori Hosoya ◽  
Keizo Nishikawa ◽  
...  

ABSTRACT NF-E2-related factor 2 (Nrf2) regulates antioxidant-responsive element-mediated induction of cytoprotective genes in response to oxidative stress. The purpose of this study was to determine the role of BRG1, a catalytic subunit of SWI2/SNF2-like chromatin-remodeling complexes, in Nrf2-mediated gene expression. Small interfering RNA knockdown of BRG1 in SW480 cells selectively decreased inducible expression of the heme oxygenase 1 (HO-1) gene after diethylmaleate treatment but did not affect other Nrf2 target genes, such as the gene encoding NADPH:quinone oxidoreductase 1 (NQO1). Chromatin immunoprecipitation analysis revealed that Nrf2 recruits BRG1 to both HO-1 and NQO1 regulatory regions. However, BRG1 knockdown selectively decreased the recruitment of RNA polymerase II to the HO-1 promoter but not to the NQO1 promoter. HO-1, but not other Nrf2-regulated genes, harbors a sequence of TG repeats capable of forming Z-DNA with BRG1 assistance. Similarly, replacement of the TG repeats with an alternative Z-DNA-forming sequence led to BRG1-mediated activation of HO-1. These results thus demonstrate that BRG1, through the facilitation of Z-DNA formation and subsequent recruitment of RNA polymerase II, is critical in Nrf2-mediated inducible expression of HO-1.


1987 ◽  
Vol 7 (2) ◽  
pp. 586-594
Author(s):  
M S Bartolomei ◽  
J L Corden

RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene.


1989 ◽  
Vol 9 (10) ◽  
pp. 4119-4130
Author(s):  
D M Bird ◽  
D L Riddle

Two genomic sequences that share homology with Rp11215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster, have been isolated from the nematode Caenorhabditis elegans. One of these sequences was physically mapped on chromosome IV within a region deleted by the deficiency mDf4, 25 kilobases (kb) from the left deficiency breakpoint. This position corresponds to ama-1 (resistance to alpha-amanitin), a gene shown previously to encode a subunit of RNA polymerase II. Northern (RNA) blotting and DNA sequencing revealed that ama-1 spans 10 kb, is punctuated by 11 introns, and encodes a 5.9-kb mRNA. A cDNA clone was isolated and partially sequenced to confirm the 3' end and several splice junctions. Analysis of the inferred 1,859-residue ama-1 product showed considerable identity with the largest subunit of RNAP II from other organisms, including the presence of a zinc finger motif near the amino terminus, and a carboxyl-terminal domain of 42 tandemly reiterated heptamers with the consensus Tyr Ser Pro Thr Ser Pro Ser. The latter domain was found to be encoded by four exons. In addition, the sequence oriented ama-1 transcription with respect to the genetic map. The second C. elegans sequence detected with the Drosophila probe, named rpc-1, was found to encode a 4.8-kb transcript and hybridized strongly to the gene encoding the largest subunit of RNA polymerase III from yeast, implicating rpc-1 as encoding the analogous peptide in the nematode. By contrast with ama-1, rpc-1 was not deleted by mDf4 or larger deficiencies examined, indicating that these genes are no closer than 150 kb. Genes flanking ama-1, including two collagen genes, also have been identified.


2004 ◽  
Vol 3 (5) ◽  
pp. 1233-1240 ◽  
Author(s):  
Kazufumi Mochizuki ◽  
Martin A. Gorovsky

ABSTRACT The germ line micronucleus in Tetrahymena thermophila is transcriptionally silent in vegetatively growing cells. However, micronuclear transcription has been observed in the early (“crescent”) stages of the sexual process, conjugation. This transcription is proposed to play a central role in identifying sites for subsequent genome rearrangements that accompany development of the somatic macronucleus from the micronucleus. RPB3 (cnjC), a gene encoding a protein homologous to the third largest subunit of RNA polymerase II (RNAP II), was previously reported to be expressed specifically during conjugation, suggesting a role in micronucleus-specific transcription. Rpb3p localized in the micronucleus only during the meiotic prophase, when micronuclear transcription occurs, and its intranuclear distribution is strikingly similar to that for previously described sites of micronuclear RNA synthesis. By contrast, Rpc5p, the homologous subunit shared by RNAPs I and III, was not detectable in the micronucleus at any stage of the life cycle. However, Rpb3p is not specific to the transcribing micronucleus. Like Rpc5p, it also localizes to macronuclei in all stages of the life cycle. Rpb3p is encoded by a unique, essential gene in Tetrahymena. Thus, RNAP II is associated with both somatic transcription and crescent transcription and probably has an important role in genome rearrangement.


Sign in / Sign up

Export Citation Format

Share Document