Interfacial roughnes and alloy scattering in the InGaAs/InAlAs/InP system grown by ALE and LAMBE

1991 ◽  
Vol 9 (4) ◽  
pp. 467-469
Author(s):  
A. Christou ◽  
Z. Hatzopoulos ◽  
A. Dimoulas ◽  
G. Kiriakidis
Keyword(s):  
1999 ◽  
Vol 607 ◽  
Author(s):  
S. Kato ◽  
T. Horikoshi ◽  
T. Ohkubo ◽  
T. Iida ◽  
Y. Takano

AbstractThe bulk crystal of silicon germanium was grown by vertical Bridgman method with germanium composition, x, varying from 0.6 to 1.0. The temperature dependent variation of the mobility is indicative of alloy scattering dominantly for the bulk wafer. Phosphorus was diffused in as-grown p-type bulk wafer at 850 °C to form pn-junction, and the diffusion coefficient of phosphorus was evaluated as a function of x. The diffusion behavior of phosphorus in silicon germanium is closely correlated with the germanium self-diffusion with changing x. For specimens with lower content x, P concentration profiles indicated “kink and tail” shape, while it was not observed for higher x. For current-voltage characteristics measurement, an ideality factor was obtained.


1980 ◽  
Vol 16 (14) ◽  
pp. 560 ◽  
Author(s):  
A.R. Adams ◽  
H.L. Tatham ◽  
J.R. Hayes ◽  
A.N. El-Sabbahy ◽  
P.D. Greene

2006 ◽  
Vol 74 (3) ◽  
Author(s):  
S. Fahy ◽  
A. Lindsay ◽  
H. Ouerdane ◽  
E. P. O’Reilly
Keyword(s):  

2010 ◽  
Vol 1267 ◽  
Author(s):  
Adul Harnwunggmoung ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractCoSb3 is known as a skutterudite compound that could exhibit high thermoelectric figure of merit. However, the thermal conductivity of CoSb3 is relatively high. In order to enhance the thermoelectric performance of this compound, we tried to reduce the thermal conductivity of CoSb3 by substitution of Rh for Co and by Tl-filling into the voids. The polycrystalline samples of (Co,Rh)Sb3 and Tl-filled CoSb3 were prepared and the thermoelectric properties such as the Seebeck coefficient, electrical resistivity, and thermal conductivity were measured in the temperature range from room temperature to 750 K. The Rh substitution for Co reduced the lattice thermal conductivity, due to the alloy scattering effect. The minimum value of the lattice thermal conductivity was 4 Wm-1K-1 at 750 K obtained for (Co0.7Rh0.3)Sb3. Also the lattice thermal conductivity rapidly decreased with increasing the Tl-filling ratio. T10.25Co4Sb12 exhibited the best ZT values; the maximum ZT was 0.9 obtained at 600 K.


2018 ◽  
Vol 773 ◽  
pp. 145-151
Author(s):  
Min Soo Park ◽  
Gook Hyun Ha ◽  
Hye Young Koo ◽  
Yong Ho Park

The Bi–Te thermoelectric system shows an excellent figure of merit (ZT) near room temperature. Research on increasing the ZT value for n‑type Bi–Te is imperative because the thermoelectric properties of this compound are inferior to those of the p-type material. For this purpose, n-type Bi2Te3-ySey powders with various amounts of Se dopant (0.3 ≤ y ≤ 0.6) were synthesized by a vacuum melting-grinding process to improve the physical properties. The ZT value of the sintered bodies was investigated in the temperature range of 298–423 K with regard to the electrical and thermal characteristics. As the Se content increased, the electrical conductivity decreased owing to a reduction in the carrier concentration, which improved the overall value of ZT. The thermal conductivity clearly decreased as the Se content increased in the temperature range of 298–373 K due to increased alloy scattering, as well as a reduction in the lattice thermal conductivity caused by crystal grain boundary scattering. At room temperature, Bi2Te2.7Se0.3 (y = 0.3) exhibited the highest ZT of 0.85. At increased temperatures, the ZT value was highest for Bi2Te2.55Se0.45 (y = 0.45), indicating that the optimal effect of the Se dopants varies depending on the temperature range.


Sign in / Sign up

Export Citation Format

Share Document