Phase behavior and physical properties of CO2-saturated heavy oil and its constitutive fractions: Experimental data and correlations

1993 ◽  
Vol 9 (4) ◽  
pp. 289-302 ◽  
Author(s):  
Sunil L. Kokal ◽  
Selim G. Sayegh
SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Desheng Huang ◽  
Ruixue Li ◽  
Daoyong Yang

Summary Phase behavior and physical properties including saturation pressures, swelling factors (SFs), phase volumes, dimethyl ether (DME) partition coefficients, and DME solubility for heavy-oil mixtures containing polar substances have been experimentally and theoretically determined. Experimentally, novel phase behavior experiments of DME/water/heavy-oil mixtures spanning a wide range of pressures and temperatures have been conducted. More specifically, a total of five pressure/volume/temperature (PVT) experiments consisting of two tests of DME/heavy-oil mixtures and three tests of DME/water/heavy-oil mixtures have been performed to measure saturation pressures, phase volumes, and SFs. Theoretically, the modified Peng-Robinson equation of state (EOS) (PR EOS) together with the Huron-Vidal mixing rule, as well as the Péneloux et al. (1982)volume-translation strategy, is adopted to perform phase-equilibrium calculations. The binary-interaction parameter (BIP) between the DME/heavy-oil pair, which is obtained by matching the measured saturation pressures of DME/heavy-oil mixtures, works well for DME/heavy-oil mixtures in the presence and absence of water. The new model developed in this work is capable of accurately reproducing the experimentally measured multiphase boundaries, phase volumes, and SFs for the aforementioned mixtures with the root-mean-squared relative error (RMSRE) of 3.92, 9.40, and 0.92%, respectively, while it can also be used to determine DME partition coefficients and DME solubility for DME/water/heavy-oil systems.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yu Shi ◽  
Daoyong Yang

A novel and pragmatic technique has been proposed to quantify the nonequilibrium phase behavior together with physical properties of foamy oil under reservoir conditions. Experimentally, constant-composition expansion (CCE) experiments at various constant pressure decline rates are conducted to examine the nonequilibrium phase behavior of solvent–CO2–heavy oil systems. Theoretically, the amount of evolved gas is first formulated as a function of time, and then incorporated into the real gas equation to quantify the nonequilibrium phase behavior of the aforementioned systems. Meanwhile, theoretical models have been developed to determine the time-dependent compressibility and density of foamy oil. Good agreements between the calculated volume–pressure profiles and experimentally measured ones have been achieved, while both amounts of evolved gas and entrained gas as well as compressibility and density of foamy oil were determined. The time-dependent effects of entrained gas on physical properties of oleic phase were quantitatively analyzed and evaluated. A larger pressure decline rate and a lower temperature are found to result in a lower pseudo-bubblepoint pressure and a higher expansion rate of the evolved gas volume in the solvent–CO2–heavy oil systems. Apparent critical supersaturation pressure increases with either an increase in pressure decline rate or a decrease in system temperature. Physical properties of the oleic phase under nonequilibrium conditions follow the same trends as those of conventionally undersaturated oil under equilibrium conditions when pressure is higher than the pseudo-bubblepoint pressure. However, there is an abrupt increase of compressibility and decrease of density associated with pseudo-bubblepoint pressure instead of bubblepoint pressure due to the initialization of gas bubble growth. The amount of dispersed gas in the oleic phase is found to impose a dominant impact on physical properties of the foamy oil. Compared with CCE experiment at constant volume expansion rate, a rebound pressure and its corresponding effects on physical properties cannot be observed in the CCE experiments at constant pressure decline rate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.


1981 ◽  
Vol 21 (06) ◽  
pp. 747-762 ◽  
Author(s):  
Karl E. Bennett ◽  
Craig H.K. Phelps ◽  
H. Ted Davis ◽  
L.E. Scriven

Abstract The phase behavior of microemulsions of brine, hydrocarbon, alcohol, and a pure alkyl aryl sulfonate-sodium 4-(1-heptylnonyl) benzenesulfonate (SHBS or Texas 1) was investigated as a function of the concentration of salt (NaCl, MgCl2, or CaCl2), the hydrocarbon (n-alkanes, octane to hexadecane), the alcohol (butyl and amyl isomers), the concentration of surfactant, and temperature. The phase behavior mimics that of similar systems with the commercial surfactant Witco TRS 10–80. The phase volumes follow published trends, though with exceptions.A mathematical framework is presented for modeling phase behavior in a manner consistent with the thermodynamically required critical tie lines and plait point progressions from the critical endpoints. Hand's scheme for modeling binodals and Pope and Nelson's approach to modeling the evolution of the surfactant-rich third phase are extended to satisfy these requirements.An examination of model-generated progressions of ternary phase diagrams enhances understanding of the experimental data and reveals correlations of relative phase volumes (volume uptakes) with location of the mixing point (overall composition) relative to the height of the three-phase region and the locations of the critical tie lines (critical endpoints and conjugate phases). The correlations account, on thermodynamic grounds, for cases in which the surfactant is present in more than one phase or the phase volumes change discontinuously, both cases being observed in the experimental study. Introduction The phase behavior of a surfactant-based micellar formulation is one of the major factors governing the displacement efficiency of any chemical flooding process employing that formulation. Knowledge of phase behavior is, thus, important for the interpretation of laboratory core floods, the design of flooding processes, and the evaluation of field tests. Phase behavior is connected intimately with other determinants of the flooding process, such as interfacial tension and viscosity. Since the number of equilibrium phases and their volumes and appearances are easier to measure and observe than phase compositions, viscosities, and interfacial tensions, there is great interest in understanding the phase-volume/phase-property relationships. Commercial surfactants, such as Witco TRS 10-80, are sulfonates of crude or partially refined oil. While they seem to be the most economically practicable surfactants for micellar flooding, their behavior, particularly with crude oils and reservoir brines, can be difficult to interpret, the phases varying with time and from batch to batch. Phase behavior studies with a small number of components, in conjunction with a theoretical understanding of phase behavior progressions, can aid in understanding more complex behavior. In particular, one can begin to appreciate which seemingly abnormal experimental observations (e.g., surfactant present in more than one phase or a discontinuity in phase volume trends) are merely features of certain regions of any phase diagram and which are peculiar to the specific crude oil or commercial surfactant used in the study.We report here experimental studies of the phase behavior of microemulsions of a pure sulfonate surfactant (Texas 1), a single normal alkane hydrocarbon, a simple brine, and a small amount of a suitable alcohol as cosurfactant or cosolvent. The controlled variables are hydrocarbon chain length, alcohol, salinity, salt type (NaCl, MgCl2, or CaCl2), surfactant purity, surfactant concentration, and temperature. Many of these experimental data were presented earlier. SPEJ P. 747^


2021 ◽  
Author(s):  
Desheng Huang ◽  
Yunlong Li ◽  
Daoyong Yang

Abstract In this paper, techniques have been developed to quantify phase behaviour and physical properties including phase boundaries, swelling factors, and phase volumes for reservoir fluids containing polar components from both experimental and theoretical aspects. Experimentally, a total of five pressure-volume-temperature (PVT) experiments including three sets of DME/CO2/heavy oil systems and two sets of DME/CO2/water/heavy oil systems have been carried out to measure saturation pressures, phase volumes, and swelling factors by using a versatile PVT setup. Theoretically, the modified Peng-Robinson equation of state (PR EOS) incorporated with the Huron-Vidal mixing rule and the Péneloux volume-translation strategy is employed as the thermodynamic model to perform phase equilibrium calculations. It is observed that the experimentally measured saturation pressures of DME/CO2/water/heavy oil mixtures are higher than those of DME/CO2/heavy oil mixtures at the same temperature and same molar ratio of solvents and heavy oil, owing to the fact that more water molecules can be evaporated into vapour phase. The binary interaction parameters (BIPs) between DME/heavy oil and CO2/DME pair, which are obtained by matching the measured saturation pressures of DME/CO2/heavy oil mixtures, work well for DME/CO2/heavy oil mixtures in the presence and absence of water. In addition, a swelling effect of heavy oil can be enhanced by adding the DME and CO2 mixtures compared to only DME or CO2. The new model developed in this work is capable of accurately reproducing the experimentally measured multiphase boundaries, swelling factors, phase volumes with a root-mean-squared relative error (RMSRE) of 4.68%, 0.71%, and 9.35%, respectively, indicating that it can provide fundamental data for simulating, designing, and optimizing the hybrid solvent-thermal recovery processes for heavy oil reservoirs.


2018 ◽  
Vol 58 (1) ◽  
pp. 428-439 ◽  
Author(s):  
Qianhui Zhao ◽  
Zhiping Li ◽  
Shuoliang Wang ◽  
Fengpeng Lai ◽  
Huazhou Li

SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 921-930 ◽  
Author(s):  
Antonin Chapoy ◽  
Rod Burgass ◽  
Bahman Tohidi ◽  
J. Michael Austell ◽  
Charles Eickhoff

Summary Carbon dioxide (CO2) produced by carbon-capture processes is generally not pure and can contain impurities such as N2, H2, CO, H2 S, and water. The presence of these impurities could lead to challenging flow-assurance issues. The presence of water may result in ice or gas-hydrate formation and cause blockage. Reducing the water content is commonly required to reduce the potential for corrosion, but, for an offshore pipeline system, it is also used as a means of preventing gas-hydrate problems; however, there is little information on the dehydration requirements. Furthermore, the gaseous CO2-rich stream is generally compressed to be transported as liquid or dense-phase in order to avoid two-phase flow and increase in the density of the system. The presence of impurities will also change the system's bubblepoint pressure, hence affecting the compression requirement. The aim of this study is to evaluate the risk of hydrate formation in a CO2-rich stream and to study the phase behavior of CO2 in the presence of common impurities. An experimental methodology was developed for measuring water content in a CO2-rich phase in equilibrium with hydrates. The water content in equilibrium with hydrates at simulated pipeline conditions (e.g., 4°C and up to 190 bar) as well as after simulated choke conditions (e.g., at -2°C and approximately 50 bar) was measured for pure CO2 and a mixture of 2 mol% H2 and 98 mol% CO2. Bubblepoint measurements were also taken for this binary mixture for temperatures ranging from -20 to 25°C. A thermodynamic approach was employed to model the phase equilibria. The experimental data available in the literature on gas solubility in water in binary systems were used in tuning the binary interaction parameters (BIPs). The thermodynamic model was used to predict the phase behavior and the hydrate-dissociation conditions of various CO2-rich streams in the presence of free water and various levels of dehydration (250 and 500 ppm). The results are in good agreement with the available experimental data. The developed experimental methodology and thermodynamic model could provide the necessary data in determining the required dehydration level for CO2-rich systems, as well as minimum pipeline pressure required to avoid two-phase flow, hydrates, and water condensation.


2008 ◽  
Vol 27 (1) ◽  
pp. 51-57 ◽  
Author(s):  
W Nicholson Price II ◽  
Yang Chen ◽  
Samuel K Handelman ◽  
Helen Neely ◽  
Philip Manor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document