Gauge invariant order parameters for the Higgs mechanism

1988 ◽  
Vol 4 ◽  
pp. 412-416
Author(s):  
T. Filk
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Patricio Gaete ◽  
J. A. Helayël-Neto ◽  
L. P. R. Ospedal

We address the effect of an anomalous triple gauge boson couplings on a physical observable for the electroweak sector of the Standard Model, when the S U 2 L ⊗ U 1 Y symmetry is spontaneously broken by the Higgs mechanism to U 1 e m . Our calculation is done within the framework of the gauge-invariant, but path-dependent variable formalism is an alternative to the Wilson loop approach. Our result shows that the interaction energy is the sum of a Yukawa and a linear potential, leading to the confinement of static probe charges. The point we wish to emphasize, however, is that the anomalous triple gauge boson couplings ( Z γ γ ) contributes to the confinement for distances on the intranuclear scale.


1992 ◽  
Vol 07 (03) ◽  
pp. 215-218 ◽  
Author(s):  
T.D. KIEU

A non-polynomial quantization for chiral gauge interactions is motivated. It is shown for Abelian group in four dimensions that the quantization, manifestly local in the Lorentz gauge, is consistent: simultaneously satisfying the requirements of gauge invariance, (perturbative) renormalizability, and unitarity. Chiral photons can be massive in the framework without invoking the Higgs mechanism. Non-Abelian generalization is then speculated.


1988 ◽  
Vol 02 (05) ◽  
pp. 613-623 ◽  
Author(s):  
Tetsuo Matsui

I construct a collective field theory for Hubbard model of high Tc superconductivity, using a path-integral method in the third quantized (slave boson) form. It is a U(1) gauge invariant theory consisting of a U(1) gauge field and a Higgs scalar. The gauge field stands for resonating valence bonds and describes a (short range) antiferro-paramagnet phase transition by a condensation machanism. The Higgs scalar represents spinless holes carrying electric charges. Through the confining gauge force, there formed bounded hole pairs on each link, which correspond to the vector mesons in lattice QCD. A superconducting phase is to be described by a condensation of a gauge invariant order parameter for these hole pairs, and to be compared with the color confining chirally broken phase in QCD. A Ginzburg-Landau theory for the vector hole-pair field is proposed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Adriano Di Giacomo

Abstract In this paper we improve the existing order parameter for monopole condensation in gauge theory vacuum, making it gauge-invariant from scratch and free of the spurious infrared problems which plagued the old one. Computing the new parameter on the lattice will unambiguously detect weather dual superconductivity is the mechanism for color confinement.As a byproduct we relate confinement to the existence of a finite correlation length in the gauge-invariant correlator of chromo-electric field strengths.


1981 ◽  
Vol 133 (1) ◽  
pp. 103 ◽  
Author(s):  
M.A. Anisimov ◽  
E.E. Gorodetskii ◽  
V.M. Zaprudskii

Author(s):  
John Iliopoulos

All ingredients of the previous chapters are combined in order to build a gauge invariant theory of the interactions among the elementary particles. We start with a unified model of the weak and the electromagnetic interactions. The gauge symmetry is spontaneously broken through the BEH mechanism and we identify the resulting BEH boson. Then we describe the theory known as quantum chromodynamics (QCD), a gauge theory of the strong interactions. We present the property of confinement which explains why the quarks and the gluons cannot be extracted out of the protons and neutrons to form free particles. The last section contains a comparison of the theoretical predictions based on this theory with the experimental results. The agreement between theory and experiment is spectacular.


Sign in / Sign up

Export Citation Format

Share Document