Comparison of precious metals and base metal oxides for catalytic deep oxidation of volatile organic compounds from coating plants: test results on an industrial pilot scale incinerator

1996 ◽  
Vol 27 (1-2) ◽  
pp. 229-236 ◽  
Author(s):  
Serge Vigneron ◽  
Pascal Deprelle ◽  
Jacques Hermia
2018 ◽  
Vol 768 ◽  
pp. 31-35
Author(s):  
Jin Wang ◽  
Zhen Zhu Ma ◽  
Lu Chen ◽  
Hong Juan Sun ◽  
Wu Kun Fan

With reference to the international standard ISO16000-9 and the national standard GB/T 31106-14, this paper has chosen leather seats as the research object in order to study the emission of volatile organic compounds (VOCs) and total volatile organic compound (TVOC). The test results show that about 21 species of VOCs released from the leather seats were measured, including several types of aldehydes, ketones, aromatic hydrocarbon ,hydrocarbon, lipids and so on.This paper analysis the possible sources of volatile organic compounds in leather seats as well.


2003 ◽  
Vol 47 (2) ◽  
pp. 121-126 ◽  
Author(s):  
H. Steiner ◽  
K. Staubmann ◽  
R. Allabashi ◽  
N. Fleischmann ◽  
A. Katzir ◽  
...  

A prototype sensing system for in-situ monitoring of volatile organic compounds in contaminated groundwater was tested at a pilot scale plant. The sensor consists of a commercially available Fourier transform infrared spectrometer, connected to a 6 m long infrared transparent silver halide fibre optic cable. A 10 cm long core-only section at the centre of the fibre is mounted on a sensor head and coated with a hydrophobic polymer layer, while the remaining fibre is protected by Teflon tubing and thus not in contact with the surrounding media. The sensor head was immersed into the monitoring wells of the pilot plant testing the sensor system under circumstances close to field conditions and typical for in-situ measurements. The pilot plant consists of a 1 m3 cubic tank filled with gravel. A pump is used to circulate water horizontally through the tank, simulating a natural aquifer. The evolution of the concentration of analytes injected into the system is monitored with time using the developed prototype sensing system. The results are validated by corresponding sampling and analysis with headspace gas chromatography.


2020 ◽  
Author(s):  
Anna Bacardit ◽  
Silvia Sorolla ◽  
Concepcio Casas ◽  
Lluis Olle ◽  
Mireia Conde

The manufacture of upholstery and automotive articles is linked to the release of Volatile Organic Compounds (hereinafter VOCs) during their manufacture, which have short and long-term effects on the health of users and the environment. In the leather sector, around 40 kg of VOCs are generated per 1000 kg of raw skin. This research work has focused on the synthesis of new and more sustainable urethane-based polymers that, in turn, allow the quality requirements of the finish to be met, which vary depending on the leather article manufactured. The main objective of the study is to minimize the content of VOCs in the different aliphatic polyurethanes synthesized in a pilot-scale reactor, making small modifications to the synthesis formulations. The synthesis route developed is based on the preparation of polymers of ionomeric polyurethanes and their subsequent dispersion in water. In the synthesis processes developed, the content of coalescing solvents and neutralizing agents, which directly contribute to the concentration of VOCs of the urethane polymers, is eliminated and / or minimized as much as possible. The new urethane-based polymers obtained have been analyzed according to the parameters of pH, viscosity, density and percentage of solids in the resin. Likewise, organoleptic tests (color, transparency, hardness, touch and tacking) and physical tests (tensile strength, water absorption, hardness and color change at 100°C for 24 hours) have been carried out on the film corresponding to each synthesized polyurethane resin. These products will be introduced in finishing formulations designed to obtain high-performance upholstery and automotive leather with minimal impact in terms of VOC content at the pilot level. Tests of fastness and physical resistance have been carried out to evaluate the performance of these leathers.


Gefahrstoffe ◽  
2020 ◽  
Vol 80 (04) ◽  
pp. 141-150
Author(s):  
R. Oppl ◽  
M. Broege ◽  
F. Kuebart ◽  
T. Neuhaus ◽  
M. Wensing

The Association for the Control of Emissions in Products for Flooring Installation, Adhesives and Building Materials (GEV) organised a round-robin test in 2017. They wanted to establish a list of recommended testing laboratories on the basis of test results. 33 laboratories from twelve countries received three spiked test products, similar to flooring adhesives and a parquet lacquer. Less variation of results was observed compared to earlier round-robin tests, but the differences between the testing laboratories were still significant. This fact inspired a discussion regarding the analytical challenges. As an example, the parameter „sum of all volatile organic compounds (VOCs) without a target value“ includes the non-identified VOCs. This round-robin test showed a relative standard deviation of 100% and more for that parameter, which questions its reliability. The performance of 16 laboratories was rated as good by GEV. Currently, a list of recommended testing laboratories for GEV emissions testing comprises eleven laboratories from two countries. These laboratories performed well in this round-robin test and presented an appropriate accreditation according to ISO/IEC 17025.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Jiaqi Li ◽  
Hui Liu ◽  
Yuzhou Deng ◽  
Gang Liu ◽  
Yunfa Chen ◽  
...  

AbstractThe strong growing interest in using catalytic oxidation to remove volatile organic compounds (VOCs), which seriously threaten the health of human being, is rooted in its desirable features such as relative energy savings, low cost, operation safety and environmental friendliness. Within the last decades, the development of manufacturing processes, characterization techniques and testing methods has led to the blossom of research in synthesis and application of various nanostructured materials, which creates great opportunities and also a tremendous challenge to apply these materials for highly efficient catalytic removal of VOCs. We herein will systematically introduce the latest research developments of nanostructured materials for the catalytic degradation of VOCs so as to provide the readers a coherent picture of the field, mainly focusing on noble metals and metal oxides, which are currently two primary types of VOC catalysts. This review will focus on synthesis, fabrication and processing of nanostructured noble metals and metal oxides as well as the fundamentals and technical approaches in catalytic removal of VOCs, providing technical strategies for effectively developing novel nanostructured catalysts with low cost, enhanced activity and high stability for pollutant removal from surrounding environments.


Sign in / Sign up

Export Citation Format

Share Document