The effect of fiber-matrix debond energy on the matrix cracking strength and the debond shear strength

1990 ◽  
Vol 38 (12) ◽  
pp. 2653-2662 ◽  
Author(s):  
M. Sutcu ◽  
W.B. Hillig
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Carlos Medina ◽  
Eduardo Fernandez ◽  
Alexis Salas ◽  
Fernando Naya ◽  
Jon Molina-Aldereguía ◽  
...  

The mechanical properties of the matrix and the fiber/matrix interface have a relevant influence over the mechanical properties of a composite. In this work, a glass fiber-reinforced composite is manufactured using a carbon nanotubes (CNTs) doped epoxy matrix. The influence of the CNTs on the material mechanical behavior is evaluated on the resin, on the fiber/matrix interface, and on the composite. On resin, the incorporation of CNTs increased the hardness by 6% and decreased the fracture toughness by 17%. On the fiber/matrix interface, the interfacial shear strength (IFSS) increased by 22% for the nanoengineered composite (nFRC). The influence of the CNTs on the composite behavior was evaluated by through-thickness compression, short beam flexural, and intraply fracture tests. The compressive strength increased by 6% for the nFRC, attributed to the rise of the matrix hardness and the fiber/matrix IFSS. In contrast, the interlaminar shear strength (ILSS) obtained from the short beam tests was reduced by 8% for the nFRC; this is attributed to the detriment of the matrix fracture toughness. The intraply fracture test showed no significant influence of the CNTs on the fracture energy; however, the failure mode changed from brittle to ductile in the presence of the CNTs.


Author(s):  
Haotian Sun ◽  
Dianyun Zhang

Abstract An integrated processing-damage model was developed to predict the inter-lamina strength of a plain weave composite flange manufactured using the Resin Transfer Molding (RTM) technique. The plain weave composite flange was subjected to four-point bending test to characterize its inter-lamina strength. A Representative Volume Element (RVE) at the fiber–matrix level was established to study the effect of curing-induced residual stress on the resulting composite strength. In order to calculate the residual stress, the curing cycle of the experiment was imposed on the RVE. After fully cured, the RVE was virtually loaded and the cohesive element and Smeared Crack Approach (SCA) were employed to capture the fiber-matrix debonding and matrix cracking responses, respectively. Due to the nature of stress history dependency, the SCA was formulated in the incremental form to reflect the stress buildup. The result shows that both fiber-matrix debonding and matrix cracking can be captured during the virtual loading. However, the load drop in the simulation mainly depends the matrix cracking. As the stress buildup in the matrix is dramatic, it demonstrates that the residual stress has large impact on the composite inter-lamina strength. The numerical methods in this paper can be used as an efficient tool in optimizing the curing process of composite material.


2020 ◽  
Vol 39 (1) ◽  
pp. 189-199
Author(s):  
Longbiao Li

AbstractIn this paper, the temperature-dependent matrix multicracking evolution of carbon-fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) is investigated. The temperature-dependent composite microstress field is obtained by combining the shear-lag model and temperature-dependent material properties and damage models. The critical matrix strain energy criterion assumes that the strain energy in the matrix has a critical value. With increasing applied stress, when the matrix strain energy is higher than the critical value, more matrix cracks and interface debonding occur to dissipate the additional energy. Based on the composite damage state, the temperature-dependent matrix strain energy and its critical value are obtained. The relationships among applied stress, matrix cracking state, interface damage state, and environmental temperature are established. The effects of interfacial properties, material properties, and environmental temperature on temperature-dependent matrix multiple fracture evolution of C/SiC composites are analyzed. The experimental evolution of matrix multiple fracture and fraction of the interface debonding of C/SiC composites at elevated temperatures are predicted. When the interface shear stress increases, the debonding resistance at the interface increases, leading to the decrease of the debonding fraction at the interface, and the stress transfer capacity between the fiber and the matrix increases, leading to the higher first matrix cracking stress, saturation matrix cracking stress, and saturation matrix cracking density.


1993 ◽  
Vol 115 (3) ◽  
pp. 314-318 ◽  
Author(s):  
S. M. Spearing ◽  
F. W. Zok

A computer simulation of multiple cracking in fiber-reinforced brittle matrix composites has been conducted, with emphasis on the role of the matrix flaw distribution. The simulations incorporate the effect of bridging fibers on the stress required for cracking. Both short and long (steady-state) flaws are considered. Furthermore, the effects of crack interactions (through the overlap of interface slip lengths) are incorporated. The influence of the crack distribution on the tensile response of such composites is also examined.


2017 ◽  
Vol 52 (12) ◽  
pp. 1589-1604 ◽  
Author(s):  
Aniruddh Vashisth ◽  
Charles E Bakis ◽  
Charles R Ruggeri ◽  
Todd C Henry ◽  
Gary D Roberts

Laminated fiber reinforced polymer composites are known for high specific strength and stiffness in the plane of lamination, yet relatively low out-of-plane impact damage tolerance due to matrix dominated interlaminar mechanical properties. A number of factors including the toughness of the matrix can influence the response of composites to impact. The objective of the current investigation is to evaluate the ballistic impact response of carbon/epoxy tubes with variable amounts of nanosilica particles added to the matrix as a toughening agent. Mass density, elastic modulus, glass transition temperature and Mode I fracture toughness of the matrix materials were measured. Tubes manufactured with these matrix materials were ballistically impacted using a round steel projectile aimed at normal incidence across the major diameter. After impact, the tubes were nondestructively inspected and subjected to mechanical tests to determine the residual shear strength in torsion. Increasing concentrations of nanosilica monotonically increased the modulus and fracture toughness of the matrix materials. Tubes with nanosilica had smaller impact damage area, higher residual shear strength, and higher energy absorbed per unit damage area versus control materials with no nanosilica. Overall, the addition of nanosilica improved the impact damage resistance and tolerance of carbon/epoxy tubes loaded in torsion, with minimal adverse effects on mass density and glass transition temperature.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2225 ◽  
Author(s):  
Ikramullah ◽  
Samsul Rizal ◽  
Yoshikazu Nakai ◽  
Daiki Shiozawa ◽  
H.P.S. Abdul Khalil ◽  
...  

The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.


1989 ◽  
Vol 170 ◽  
Author(s):  
A. T. Dibenedetto ◽  
Jaime A. Gomez ◽  
C. Schilling ◽  
F. Osterholtz ◽  
G. Haddad

AbstractThe thermomechanical stability of organosilane surface treatments for E-glass fibers used in fiber reinforced composites was evaluated. The effect of molecular structure of 40 to 80 namometer coatings on the force transmission across the fiber/matrix interface was measured as a function of temperature and exposure to water using a fiber fragmentation test. It was found that phenyl-substituted amino silanes exhibited better thermal stability, but were less resistant to boiling water, than the commierically available γ-amino propyl silanes. A bis-trimethoxy γ-amino propyl silane showed an increase in both the hydrolytic and thermal stability when compared to the commiercial product. A good balance of thermal and hydrolytic stability was also obtained with a methylaminopropyltrimethoxy silane coating.The strain energy released from the glass fibers upon decoupling from the poxy matrix or silane coating was found to be in the range of 145 to 186 g/m2 and varied no more than 20 percent over a temperature range of 25 to 75°C or when exposed to boiling water and then redried. It also varied very little with the silane coating used. In addition, the average shear stress attained at the fiber-matrix interface in an imbedded single fiber test at 25°C was as much as two times higher than the shear strength of the epoxy matrix and as much as five times higher at elevated temperature. These data lead one to the conclusion that the interphase failure in these composites is controlled by a plane strain fracture in the constrained region of the organic phase, near the fiber surface, rather than by the maximum shear strength in the interphase.


Sign in / Sign up

Export Citation Format

Share Document