COMPARISON OF A DISTRIBUTED PARAMETER AND A BOUNDARY INTEGRAL MODEL OF LONG PERIOD OCEAN WAVES

Author(s):  
Stergios A. Dendrou ◽  
Basile A. Dendrou ◽  
Charles I. Moore
1991 ◽  
Vol 15 ◽  
pp. 101-108 ◽  
Author(s):  
Colin Fox ◽  
Vernon A. Squire

The possibility of long-period ocean waves coupling to an ice shelf is investigated. A thick elastic plate model is used for the ice shelf with comparisons made to the simpler thin-plate model. The strain set up on the ice shelf by a normally incident single frequency ocean wave is calculated by completely solving the equations governing the velocity potential for such a system. In the absence of measurements on an ice shelf, existing measurements of long-period strain on an ice tongue are used to estimate the required incident amplitude in the open water to induce the observed oscillations. It is found that the height of seas required indicates that ocean wave driving is a plausible forcing mechanism for observed oscillations.


1999 ◽  
Vol 89 (6) ◽  
pp. 1535-1542 ◽  
Author(s):  
Spahr C. Webb ◽  
Wayne C. Crawford

Abstract The deformation of the seafloor under loading by long-period ocean waves raises vertical component noise levels at the deep seafloor by 20 to 30 dB above noise levels at good continental sites in the band from 0.001 to 0.04 Hz. This noise substantially limits the detection threshold and signal-to-noise ratio for long-period phases of earthquakes observed by seafloor seismometers. Borehole installation significantly improves the signal-to-noise ratio only if the sensor is installed at more than 1 km below the seafloor because the deformation signal decays slowly with depth. However, the vertical-component deformation signal can be predicted and suppressed using seafloor measurements of pressure fluctuations observed by differential pressure gauges. The pressure observations of ocean waves are combined with measurements of the transfer function between vertical acceleration and pressure to predict the vertical component deformation signal. Subtracting the predicted deformation signal from pressure observations can reduce vertical component noise levels near 0.01 Hz by more than 25 dB, significantly improving signal-to-noise ratios for long-period phases. There is also a horizontal-component deformation signal but it is smaller than the vertical-component signal and only significant in shallow water (<1-km deep). The amplitude of the deformation signal depends both on the long-period ocean-wave spectrum and the elastic-wave velocities in the oceanic crust. It is largest at sedimented sites and in shallow water.


1977 ◽  
Vol 14 (04) ◽  
pp. 379-386
Author(s):  
Bruce H. Adee

In the past few years floating breakwaters used for the protection of marina facilities have found increasing application. They provide a cost-effective solution at many potential sites and alleviate the environmental damage associated with more traditional breakwater construction. Operational experience has shown that these devices are effective in reducing incident wave heights where they are not subjected to long-period ocean waves. Experience also indicates suitable construction materials. Problems have developed in providing satisfactory connections between segments, but the large anchoring forces that were originally expected have not materialized in field measurements.


1972 ◽  
Vol 12 (04) ◽  
pp. 329-344 ◽  
Author(s):  
F.H. Hsu ◽  
K.A. Blenkarn

Abstract A procedure for calculation of peak mooring force caused by the long-period vessel drift oscillation is described. The long-period drift oscillation is induced by the action of groups of high waves in random seas. The procedure is developed from consideration of momentum flux change in ocean waves. Introduction The demand on the offshore petroleum industry for mooring under trying conditions has created the need for a clearer understanding of the physical phenomena involved in mooring large vessels under phenomena involved in mooring large vessels under severe conditions in the open ocean. The offshore industry has experienced major difficulties in mooring under storm conditions and has suffered extensive financial loss. Over the years, attempts have been made to solve offshore mooring problems, utilizing a variety of vessels and mooring techniques. Results of experience and practice offer conflicting indications of the relative merits of various mooring systems. Various engineering and scientific studies have contributed toward an understanding of many factors influencing forces; however, it appears that previous studies have, for the most part, ignored an important phenomenon, which under certain situations is the governing factor to be considered in design of mooring systems. Specifically, there has been little attention devoted to the effects of slow vessel drift oscillations in random or irregular seas. It is this phenomenon that is the prime subject of the present phenomenon that is the prime subject of the present paper. paper. Fig. 1 illustrates results obtained from model tests of a moored vessel in irregular waves. Shown in the figure, as a function of time, are the variations of wave height and period, the surge or drift position of the vessel, and the tension in the primary mooring line. It will be noted that the surge primary mooring line. It will be noted that the surge motion of the vessel involves both a direct wave-induced short-period surge and a gradual long-period drift oscillation taking place over a period of 1 minute or more in prototype time. This type of drift motion is also found in the motion records of moored ships in an actual ocean storm environment. Moreover, the basic behavior of slow oscillations is not unique to moored vessels. For instance, such behavior has been observed in tests involving vessels towed through irregular waves with a constant towing force. In such case, it has been observed that the vessel velocity exhibits slow oscillations with periods in the range of 1 to 2 minutes. When an ocean wave is propagated toward a moored vessel, part of the wave is reflected, the remainder being transmitted on beyond the vessel The conservation of wave momentum results in a net force applied to the vessel for each wave. For regular waves the consequence is a steady drift force resulting in a static shift of the average position of the moored vessel. For irregular waves, position of the moored vessel. For irregular waves, on the other hand, a varying sequence of drift forces arises in correspondence to changes in wave height and period. Investigations leading to this paper show that the ensuing long period drift oscillation of the vessel can, for many cases, be the completely dominating influence in determining maximum mooring line tension. SPEJ P. 329


2011 ◽  
Vol 60 (4) ◽  
pp. 413-432
Author(s):  
Krystyn Pawluk ◽  
Renata Sulima

Boundary-integral model of permanent magnet of a tube segment as shape The magnetic field due to a permanent magnet of a tube-side segment as shape and of radial-oriented magnetization is considered. Such a sheet modelling a single pole of the magnet is used to express the suitable contribution to magnetic quantities. A boundary-integral approach is applied that is based on a virtual scalar quantity attributed to the magnet pole. Such an approach leads to express analytically the scalar magnetic potential and the magnetic flux density by means of the elliptic integrals. Numerical examples of the computed fields are given. The general idea of the presented approach is mainly directed towards designing the magnetic field within the air gap of electric machines with permanent magnets as an excitation source. Other technical structures with permanent magnets may be a subject of this approach as well.


2011 ◽  
Vol 03 (01) ◽  
pp. 99-117 ◽  
Author(s):  
ZIJUN FANG ◽  
GUANSHUI XU ◽  
DAVID D. OGLESBY

The geometric effects on earthquake nucleation processes on bent dip-slip faults are studied using a slip strengthening and weakening friction law implemented in a two-dimensional quasi-static boundary integral model. The results show that the bend causes normal stress variations under tectonic loading on both the upper and lower segments. These stress variations differ from those on planar faults, leading to significant effects on earthquake nucleation location and time. Earthquakes tend to nucleate at shallower locations on thrust faults and at deeper locations on normal faults for steeper dipping angles on the lower fault segments. The elapsed time until nucleation on both thrust and normal faults is increased considerably as the bend angle becomes larger. For a thrust fault with a nearly horizontal lower segment, the time until nucleation can be more than 10 times larger than that for a corresponding planar fault. These findings may provide important insights for earthquake hazard analysis by taking the fault geometry effect into account when estimating hypocenter positions and time to instability.


Sign in / Sign up

Export Citation Format

Share Document