Virtual Water Trade Among World Countries Associated With Food Trade

Author(s):  
Carole Dalin ◽  
Megan Konar
2006 ◽  
Vol 3 (1) ◽  
pp. 1-26 ◽  
Author(s):  
H. Yang ◽  
L. Wang ◽  
K. C. Abbaspour ◽  
A. J. B. Zehnder

Abstract. Amid an increasing water scarcity in many parts of the world, virtual water trade as both a policy instrument and practical means to balance the regional, national and global water budget has received much attention in recent years. Built upon the knowledge of virtual water accounting in the literature, this study examines the efficiency of the resource use embodied in the global virtual water trade from the perspectives of exporting and importing countries. Different characteristics between "green" and "blue" virtual water corresponding to rainfed and irrigated agriculture are elaborated. The investigation reveals that the virtual water flows primarily from countries of high water productivity to countries of low water productivity, generating a global saving of water resources. Meanwhile, the domination of green virtual water in the total virtual water trade constitutes low opportunity costs and environmental impacts as opposed to blue virtual water. The results suggest efficiency gains in the global food trade in terms of water resource utilization. The study raises awareness of negative impacts of increasing reliance on irrigation for food production in many countries, including food exporting countries. The findings of the study call for a greater emphasis on rainfed agriculture to improve global food security and environmental sustainability.


2018 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Rabi H. Mohtar ◽  
Seung-Hwan Yoo

Abstract. The aim of this study is to analyze the impacts of food trade on food security and water-land savings in the Arab World in terms of virtual water trade (VWT). We estimated the total volume of virtual water imported for four major crops – barley, maize, rice, and wheat – from 2000 to 2012, and assessed their impacts on water and land savings, and food security. The largest volume of virtual water was imported by Egypt (19.9 billion m3/year), followed by Saudi Arabia (13.0 billion m3/year). Accordingly, Egypt would save 13.1 billion m3 in irrigation water and 2.1 million ha of crop area through importing crops. In addition, connectivity and influence of each country in the VWT network was analyzed using degree and eigenvector centralities. The study revealed that the Arab World focused more on increasing the volume of virtual water imported during the period 2006–2012 with little attention to the expansion of connections with country exporters, which is a vulnerable expansion. This study shed light on opportunities and risks associated with VWT and its role in food security and land management in the Arab World.


2013 ◽  
Vol 17 (8) ◽  
pp. 3219-3234 ◽  
Author(s):  
M. Konar ◽  
Z. Hussein ◽  
N. Hanasaki ◽  
D. L. Mauzerall ◽  
I. Rodriguez-Iturbe

Abstract. The international trade of food commodities links water and food systems, with important implications for both water and food security. The embodied water resources associated with food trade are referred to as "virtual water trade". We present the first study of the impact of climate change on global virtual water trade flows and associated savings for the year 2030. In order to project virtual water trade and savings under climate change, it is essential to obtain projections of both bilateral crop trade and the virtual water content of crops in each country of production. We use the Global Trade Analysis Project model to estimate bilateral crop trade under changes in agricultural productivity for rice, soy, and wheat. We use the H08 global hydrologic model to determine the impact of climatic changes to crop evapotranspiration for rice, soy, and wheat in each country of production. Then, we combine projections of bilateral crop trade with estimates of virtual water content to obtain virtual water trade flows under climate change. We find that the total volume of virtual water trade is likely to go down under climate change, due to decreased crop trade from higher crop prices under scenarios of declining crop yields and due to decreased virtual water content under high agricultural productivity scenarios. However, the staple food trade is projected to save more water across most climate change scenarios, largely because the wheat trade re-organizes into a structure where large volumes of wheat are traded from relatively water-efficient exporters to less efficient importers.


2006 ◽  
Vol 10 (3) ◽  
pp. 443-454 ◽  
Author(s):  
H. Yang ◽  
L. Wang ◽  
K. C. Abbaspour ◽  
A. J. B. Zehnder

Abstract. Amid an increasing water scarcity in many parts of the world, virtual water trade as both a policy instrument and practical means to balance the local, national and global water budget has received much attention in recent years. Building upon the knowledge of virtual water accounting in the literature, this study assesses the efficiency of water use embodied in the international food trade from the perspectives of exporting and importing countries and at the global and country levels. The investigation reveals that the virtual water flows primarily from countries of high crop water productivity to countries of low crop water productivity, generating a global saving in water use. Meanwhile, the total virtual water trade is dominated by green virtual water, which constitutes a low opportunity cost of water use as opposed to blue virtual water. A sensitivity analysis, however, suggests high uncertainties in the virtual water accounting and the estimation of the scale of water saving. The study also raises awareness of the limited effect of water scarcity on the global virtual water trade and the negative implications of the global water saving for the water use efficiency and food security in importing countries and the environment in exporting countries. The analysis shows the complexity in evaluating the efficiency gains in the international virtual water trade. The findings of the study, nevertheless, call for a greater emphasis on rainfed agriculture to improve the global food security and environmental sustainability.


2013 ◽  
Vol 10 (1) ◽  
pp. 67-101 ◽  
Author(s):  
M. Konar ◽  
Z. Hussein ◽  
N. Hanasaki ◽  
D. L. Mauzerall ◽  
I. Rodriguez-Iturbe

Abstract. The international trade of food commodities links water and food systems, with important implications for both water and food security. The embodied water resources associated with food trade are referred to as "virtual water trade". We present the first study of the impact of climate change on global virtual water trade flows and associated savings for the year 2030. In order to project virtual water trade under climate change, it is essential to obtain projections of both bilateral crop trade and the water-use efficiency of crops in each country of production. We use the Global Trade Analysis Project (GTAP) to estimate bilateral crop trade flows under changes in agricultural productivity. We use the H08 global hydrologic model to estimate the water-use efficiency of each crop in each country of production and to transform crop flows into virtual water flows. We find that the total volume of virtual water trade is likely to go down under climate change. However, the staple food trade is projected to save more water across most climate impact scenarios, largely because the wheat trade re-organizes into a more water-efficient structure. These findings indicate that trade may be an adaptation measure to climate change with ramifications for policy.


2020 ◽  
Vol 47 (6) ◽  
pp. 996-1004
Author(s):  
Wenliang Li ◽  
Qing Sun ◽  
Guowei Cheng ◽  
Weiping Wang ◽  
Shisong Qu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 748
Author(s):  
Ming Li ◽  
Qingsong Tian ◽  
Yan Yu ◽  
Yueyan Xu ◽  
Chongguang Li

The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt.


Author(s):  
Jie Deng ◽  
Cai Li ◽  
Ling Wang ◽  
Shuxia Yu ◽  
Xu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document