PATTERN OF RESPONSE TO INTERSTITIAL HYPERTHERMIA AND BRACHYTHERAPY FOR MALIGNANT INTRACRANIAL TUMOR: A CT ANALYSIS

Author(s):  
D.W. ROBERTS ◽  
T. NAKAJIMA ◽  
T.P. RYAN ◽  
P.J. HOOPES ◽  
S. TREMBLY ◽  
...  
1990 ◽  
Vol 26 (4) ◽  
pp. 697
Author(s):  
M Y Kim ◽  
C H Suh ◽  
S H Lee ◽  
H R Choi ◽  
B Y Ahn ◽  
...  
Keyword(s):  

1997 ◽  
Vol 36 (4) ◽  
pp. 677
Author(s):  
Young Tae Jeon ◽  
Hae Kyung Lee ◽  
Mi Sun Jung ◽  
Jong Pil Yoon ◽  
Hyun Sook Hong ◽  
...  

Author(s):  
В.А. Бывальцев ◽  
И.А. Степанов ◽  
Е.Г. Белых ◽  
А.И. Яруллина

Цель обзора - анализ современных данных литературы о нарушении внутриклеточных сигнальных путей, играющих ведущую роль в развитии менингиом, генетических и молекулярных профилях данной группы опухолей. К настоящему времени изучено множество аберрантных сигнальных внутриклеточных путей, которые играют важнейшую роль в развитии менингиом головного мозга. Четкое понимание поврежденных внутриклеточных каскадов поможет изучить влияние генетических мутаций и их эффектов на менингиомогенез. Подробное исследование генетического и молекулярного профиля менингиом позволит сделать первый уверенный шаг в разработке более эффективных методов лечения данной группы интракраниальных опухолей. Хромосомы 1, 10, 14, 22 и связанные с ними генные мутации ответственны за рост и прогрессию менингиом. Предполагается, что только через понимание данных генетических повреждений будут реализованы новейшие эффективные методы лечения. Будущая терапия будет включать в себя комбинации таргетных молекулярных агентов, в том числе генную терапию, малые интерферирующие РНК, протонную терапию и другие методы воздействия, как результат дальнейшего изучения генетических и биологических изменений, характерных для менингеальных опухолей. Meningiomas are by far the most common tumors arising from the meninges. A myriad of aberrant signaling pathways involved with meningioma tumorigenesis, have been discovered. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis. An understanding of the genetic and molecular profile of meningioma would provide a valuable first step towards developing more effective treatments for this intracranial tumor. Chromosomes 1, 10, 14, 22, their associated genes, have been linked to meningioma proliferation and progression. It is presumed that through an understanding of these genetic factors, more educated meningioma treatment techniques can be implemented. Future therapies will include combinations of targeted molecular agents including gene therapy, si-RNA mediation, proton therapy, and other approaches as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas.


1992 ◽  
Vol 33 (1) ◽  
pp. 39-44 ◽  
Author(s):  
H. Honda ◽  
C. E. Coffman ◽  
K. S. Berbaum ◽  
T. J. Barloon ◽  
K. Masuda
Keyword(s):  

Author(s):  
NOBUE UCHIDA ◽  
HIROKAZU KATO ◽  
ATSUYA KAWAGUCHI ◽  
MASAHIRO MORIYAMA ◽  
HAJIME KITAGAKI ◽  
...  

Author(s):  
Darius M. Thiesen ◽  
Dimitris Ntalos ◽  
Alexander Korthaus ◽  
Andreas Petersik ◽  
Karl-Heinz Frosch ◽  
...  

Abstract Introduction For successful intramedullary implant placement at the femur, such as nailing in unstable proximal femur fractures, the use of an implant that at least reaches or exceeds the femoral isthmus and yields sufficient thickness is recommended. A number of complications after intramedullary femoral nailing have been reported, particularly in Asians. To understand the anatomical features of the proximal femur and their ethnic differences, we aimed to accurately calculate the femoral isthmus dimensions and proximal distance of Asians and Caucasians. Methods In total, 1189 Asian and Caucasian segmented 3D CT data sets of femurs were analyzed. The individual femoral isthmus diameter was precisely computed to investigate whether gender, femur length, age, ethnicity or body mass index have an influence on isthmus diameters. Results The mean isthmus diameter of all femurs was 10.71 ± 2.2 mm. A significantly larger diameter was found in Asians when compared to Caucasians (p < 0.001). Age was a strong predictor of the isthmus diameter variability in females (p < 0.001, adjusted r2 = 0.299). With every year of life, the isthmus showed a widening of 0.08 mm in women. A Matched Pair Analysis of 150 female femurs showed a significant difference between isthmus diameter in Asian and Caucasian femurs (p = 0.05). In 50% of the cases the isthmus was found in a range of 2.4 cm between 16.9 and 19.3 cm distal to the tip of the greater trochanter. The female Asian femur differs from Caucasians as it is wider at the isthmus. Conclusions In absolute values, the proximal isthmus distance did not show much variation but is more proximal in Asians. The detailed data presented may be helpful in the development of future implant designs. The length and thickness of future standard implants may be considered based on the findings.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii114-ii114
Author(s):  
Adam Grippin ◽  
Brandon Wummer ◽  
Hector Mendez-Gomez ◽  
Tyler Wildes ◽  
Kyle Dyson ◽  
...  

Abstract BACKGROUND Brain tumors are notoriously difficult to treat in part due to their isolation behind the blood brain barrier and their power to suppress antitumor immune responses. We have previously reported cationic liposome formulations capable of delivering immune modulatory nucleic acids to immune cells in various peripheral organs, but there is currently no reliable method to deliver nucleic acids into brain tumors without direct injection into the tumor site. OBJECTIVE Here, we report the development of a customized lipid nanoparticle to deliver immune modulatory nucleic acids to immune cells in brain tumors. APPROACH Cationic liposomes composed of varying lipid combinations were evaluated for their ability to deliver functional mRNA and siRNA to innate immune cells in vitro and in intracranial tumor models. Nucleic acids were labelled with Cy3 to monitor particle distribution in vivo. RESULTS Lipids composed of DOTAP and cholesterol selectively delivered mRNA and siRNA to intracranial GL261 and KR158b tumors. Interestingly, these particles selectively delivered these nucleic acids to CD45+ white blood cells with minimal delivery to CD45- tumor cells or normal brain tissue. Encapsulation of siRNA blocking programmed death ligand 1 (PDL1) significantly reduced PDL1 expression on innate immune cells in brain tumors, with the greatest effects on tumor-associated macrophages. Co-administration of systemic checkpoint blockade with intravenous administration of these lipid nanoparticles bearing PDL1 siRNA enabled systemic and intratumoral checkpoint blockade, leading to 37% long term survivorship in an otherwise fatal intracranial tumor model. CONCLUSIONS Our customized lipid nanoparticles enable potent intratumoral immune modulation via delivery of nucleic acids to immune cells in brain tumors.


Author(s):  
Melissa R. Requist ◽  
Yantarat Sripanich ◽  
Tim Rolvien ◽  
Amy L. Lenz ◽  
Alexej Barg

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 319
Author(s):  
Christian Ogasawara ◽  
Brandon D. Philbrick ◽  
D. Cory Adamson

Meningiomas are the most common intracranial tumor, making up more than a third of all primary central nervous system (CNS) tumors. They are mostly benign tumors that can be observed or preferentially treated with gross total resection that provides good outcomes. Meningiomas with complicated histology or in compromising locations has proved to be a challenge in treating and predicting prognostic outcomes. Advances in genomics and molecular characteristics of meningiomas have uncovered potential use for more accurate grading and prediction of prognosis and recurrence. With the study and detection of genomic aberrancies, specific biologic targets are now being trialed for possible management of meningiomas that are not responsive to standard surgery and radiotherapy treatment. This review summarizes current epidemiology, etiology, molecular characteristics, diagnosis, treatments, and current treatment trials.


2021 ◽  
Vol 22 (13) ◽  
pp. 6673
Author(s):  
Xiaochao Qu ◽  
Mei Liao ◽  
Weiwei Liu ◽  
Yisheng Cai ◽  
Qiaorong Yi ◽  
...  

Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16-/- zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16-/- zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16-/- using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein–protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development.


Sign in / Sign up

Export Citation Format

Share Document