Glucose Transporter Type I Deficiency and Other Glucose Flux Disorders

Author(s):  
Juan M. Pascual ◽  
Dong Wang ◽  
Darryl C. De Vivo
1990 ◽  
Vol 259 (4) ◽  
pp. E593-E598 ◽  
Author(s):  
E. J. Henriksen ◽  
R. E. Bourey ◽  
K. J. Rodnick ◽  
L. Koranyi ◽  
M. A. Permutt ◽  
...  

The relationships among fiber type, glucose transporter (GLUT-4) protein content, and glucose transport activity stimulated maximally with insulin and/or contractile activity were studied by use of the rat epitrochlearis (15% type I-20% type II2a-65% type IIb), soleus (84-16-0%), extensor digitorum longus (EDL, 3-57-40%), and flexor digitorum brevis (FDB, 7-92-1%) muscles. Insulin-stimulated 2-deoxy-D-glucose (2-DG) uptake was greatest in the soleus, followed (in order) by the FDB, EDL, and epitrochlearis. On the other hand, contractile activity induced the greatest increase in 2-DG uptake in the FDB, followed by the EDL, soleus, and epitrochlearis. The effects of insulin and contractile activity on 2-DG uptake were additive in all the muscle preparations, with the relative rates being FDB greater than soleus greater than EDL greater than epitrochlearis. Quantitation of the GLUT-4 protein content with the antiserum R820 showed the following pattern: FDB greater than soleus greater than EDL greater than epitrochlearis. Linear regression analysis showed that whereas a relatively low and nonsignificant correlation existed between GLUT-4 protein content and 2-DG uptake stimulated by insulin alone, significant correlations existed between GLUT-4 protein content and 2-DG uptake stimulated either by contractions alone (r = 0.950) or by insulin and contractions in combination (r = 0.992). These results suggest that the differences in maximally stimulated glucose transport activity among the three fiber types may be related to differences in their content of GLUT-4 protein.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 312-313
Author(s):  
Chloe DeGiorgio ◽  
Sarah Elefson ◽  
Merlin D Lindemann ◽  
James C Matthews

Abstract The effect of developmental age (d) on expression of genes responsible for hepatic glycogen (GLY) synthesis and degradation, glucose flux, and GLY content, was determined in crossbred pigs euthanized (n = 6) at birth (d 0, pre-suckle), 1, 3, 7, 14, and 21 d. Liver GLY content and relative abundance of mRNA (RT-PCR) was determined. The relative content of liver mRNA was determined in 2 experiments, d 0, 1, 3, 7 (Experiment 1) and d 0, 1, 7, 14, 21 (Experiment 2). Within each experiment, data were analyzed using the GLM procedure of SAS. Fisher’s protected LSD procedure was used to separate treatment means. Day 0 (76.0) GLY content (mg/g) decreased (P < 0.01) 82% from d 0 to d 1, increased (P < 0.05) from d 1 (13.8) through d 14 (28.4), and did not differ (P = 0.07) between d 1 and 21. In Experiment 1, mRNA content of GLY synthesis proteins GYG1 and GYS1 was greatest (P < 0.01) at d 3 and 7; and 1 and 3; respectively, whereas mRNA content of GLY degrading proteins PGM1, PGM2, and PGM5 was greatest (P ≤ 0.01) at d 1; d 0; and d 1 and 7; respectively. In Experiment 2, mRNA content of GLY synthesis proteins GBE1 and GYS1 was greatest (P < 0.01) at d 0 and 21; and d 1 and 21; respectively, whereas mRNA content of GLY degrading proteins AGL, PGM2, PGM2L, and PGM5 was greatest (P < 0.01) at d 21; d 0; d 7, 14, and 21; and d 14 and 21; respectively. Glucose transporter SGLT1 mRNA content was greatest (P < 0.01) at d 14 and 21. These findings indicate that the pattern of mRNA content of key hepatic GLY degradation and synthesis proteins was consistent with GLY content of suckling pigs.


2003 ◽  
Vol 284 (3) ◽  
pp. E541-E548 ◽  
Author(s):  
Hilary Ann Petersen ◽  
Patrick T. Fueger ◽  
Deanna P. Bracy ◽  
David H. Wasserman ◽  
Amy E. Halseth

The aim of this study was to determine barriers limiting muscle glucose uptake (MGU) during increased glucose flux created by raising blood glucose in the presence of fixed insulin. The determinants of the maximal velocity ( V max) of MGU in muscles of different fiber types were defined. Conscious rats were studied during a 4 mU · kg−1 · min−1insulin clamp with plasma glucose at 2.5, 5.5, and 8.5 mM. [U-14C]mannitol and 3- O-methyl-[3H]glucose ([3H]MG) were infused to steady-state levels ( t = −180 to 0 min). These isotope infusions were continued from 0 to 40 min with the addition of a 2-deoxy-[3H]glucose ([3H]DG) infusion. Muscles were excised at t = 40 min. Glucose metabolic index (Rg) was calculated from muscle-phosphorylated [3H]DG. [U-14C]mannitol was used to determine extracellular (EC) H2O. Glucose at the outer ([G]om) and inner ([G]im) sarcolemmal surfaces was determined by the ratio of [3H]MG in intracellular to EC H2O and muscle glucose. Rg was comparable at the two higher glucose concentrations, suggesting that rates of uptake near V max were reached. In summary, by defining the relationship of arterial glucose to [G]om and [G]im in the presence of fixed hyperinsulinemia, it is concluded that 1) V max for MGU is limited by extracellular and intracellular barriers in type I fibers, as the sarcolemma is freely permeable to glucose; 2) V max is limited in muscles with predominantly type IIb fibers by extracellular resistance and transport resistance; and 3) limits to Rg are determined by resistance at multiple steps and are better defined by distributed control rather than by a single rate-limiting step.


1992 ◽  
Vol 263 (2) ◽  
pp. C443-C452 ◽  
Author(s):  
A. Marette ◽  
J. M. Richardson ◽  
T. Ramlal ◽  
T. W. Balon ◽  
M. Vranic ◽  
...  

D-Glucose protectable cytochalasin B (CB) binding to subcellular membrane fractions was used to determine glucose transporter number in red (quadriceps-gastrocnemius-soleus) and white (quadriceps-gastrocnemius) rat muscle. CB binding was twofold higher in isolated plasma membranes of red than of white muscle. In contrast, the number of transporters in an isolated insulin-sensitive intracellular membrane organelle was similar in the two muscle groups. Immunoblotting and immunofluorescence microscopy with anti-GLUT4 and anti-GLUT1 antibodies indicated that both GLUT1 and GLUT4 transporter isoforms account for the higher abundance of CB binding sites in plasma membranes of red than of white muscle. Immunofluorescence localized GLUT4 to both the surface and the interior of the muscle cell and demonstrated that type I (slow twitch oxidative) and type IIa (fast twitch oxidative-glycolytic) fibers are enriched in GLUT4 protein compared with type IIb (fast twitch glycolytic) fibers. In contrast, GLUT1 reactivity was restricted to the surface of the muscle cell and was also highly enriched in the perineurial sheaths of peripheral nerves and the capsules of muscle spindles present in both red and white muscles. Insulin caused a twofold increase in CB binding in isolated plasma membranes of red or white muscles with a corresponding 40-50% decrease in CB binding in isolated intracellular membranes. These changes in CB binding were paralleled by similar changes in the membrane distribution of the GLUT4 glucose transporter isoform and in glucose transport activity measured after insulin perfusion of hindquarter muscles. In contrast, insulin did not change the distribution of either GLUT1 glucose transporters or Na(+)-K(+)-ATPase alpha 1-subunits. The molar ratio of GLUT4 to GLUT1 in red and white muscle plasma membranes was found to be 4:1 in the basal state and 7:1 in the insulin-stimulated state. These results indicate that red muscle contains a higher amount of GLUT1 and GLUT4 transporters at the plasma membrane than white muscle in the basal and insulin-stimulated states but that GLUT4 translocation does not differ between muscle types. In addition, GLUT4 expression correlates with the metabolic nature (oxidative vs. glycolytic) of skeletal muscle fibers, rather than with their contractile properties (slow twitch vs. fast twitch).


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Ann Louise Olson

GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease.


2012 ◽  
Vol 33 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Isaac Marin-Valencia ◽  
Levi B Good ◽  
Qian Ma ◽  
Craig R Malloy ◽  
Juan M Pascual

It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucosedeficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism.


2019 ◽  
Vol 78 (4) ◽  
pp. 151-159
Author(s):  
Shinsuke Itoh ◽  
Hiroshi Kurosaka ◽  
Yuka Murata ◽  
Chisato Morita ◽  
Kuriko Kagitani-Shimono ◽  
...  

1991 ◽  
Vol 261 (5) ◽  
pp. G818-G822 ◽  
Author(s):  
L. A. Heitlinger ◽  
B. U. Li ◽  
R. D. Murray ◽  
H. J. McClung ◽  
H. R. Sloan ◽  
...  

Considerable discrepancies exist in the literature regarding the rates of glucose absorption from the common dietary disaccharides, lactose, maltose, and sucrose. This study compared the unidirectional flux of glucose derived from dietary disaccharides with that of their constituent monosaccharides in vitro. Lactose-stimulated short-circuit current (Isc) and mucosal-to-serosal flux (Jm----s) were lower than that of an equimolar glucose-galactose mixture and were phlorizin inhibitable. Maltose- and glucose-stimulated Isc were similar, but Jm----s of glucose derived from the hydrolysis of maltose was lower than that of free glucose. Sucrose-stimulated Isc and Jm----s were similar to that of an equimolar glucose-fructose mixture. Isc and Jm----s of glucose from both maltose and sucrose were phlorizin and acarbose inhibitable. We conclude that the rate of glucose uptake from disaccharides is less than or equal to that of free glucose and is dependent on the glucose source. We speculate that regulation of glucose uptake from disaccharides can occur at three sites: the hydrolytic enzyme, the glucose transporter, and the tight junctions.


Sign in / Sign up

Export Citation Format

Share Document