CONJUGATING ANTIBODIES TO LIGANDS, ENZYMES, AND METALLIC PARTICLES

1994 ◽  
pp. 211-225
Author(s):  
BYUNG-KIL CHOE
Keyword(s):  
Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


Author(s):  
Jun Liu ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Ultrafine particles usually have unique physical properties. This study illustrates how the lattice defects and interfacial structures between particles are related to the size of ultrafine crystalline gold particles.Colloidal gold particles were produced by reducing gold chloride with sodium citrate at 100°C. In this process, particle size can be controlled by changing the concentration of the reactant. TEM samples are prepared by transferring a small amount of solution onto a thin (5 nm) carbon film which is suspended on a copper grid. In this work, all experiments were performed with Philips 430T at 300 kV.With controlled seeded growth, particles of different sizes are produced, as shown in Figure 1. By a careful examination, it can be resolved that very small particles have lattice defects with complex interfaces. Some typical particle structures include multiple twins, resulting in a five-fold symmetry bicrystals, and highly disordered regions. Many particles are too complex to be described by simple models.


2021 ◽  
Vol 89 (2) ◽  
pp. 15
Author(s):  
M. R. Mozafari ◽  
E. Mazaheri ◽  
K. Dormiani

Introduction: Bioactive encapsulation and drug delivery systems have already found their way to the market as efficient therapeutics to combat infections, viral diseases and different types of cancer. The fields of food fortification, nutraceutical supplementation and cosmeceuticals have also been getting the benefit of encapsulation technologies. Aim: Successful formulation of such therapeutic and nutraceutical compounds requires thorough analysis and assessment of certain characteristics including particle number and surface area without the need to employ sophisticated analytical techniques. Solution: Here we present simple mathematical formulas and equations used in the research and development of drug delivery and controlled release systems employed for bioactive encapsulation and targeting the sites of infection and cancer in vitro and in vivo. Systems covered in this entry include lipidic vesicles, polymeric capsules, metallic particles as well as surfactant- and tocopherol-based micro- and nanocarriers.


Author(s):  
Alireza Zaheri ◽  
Mohammadreza Farahani ◽  
Alireza Sadeghi ◽  
Naser Souri

The bonding strength, and microstructures of Cu and Al couples using metallic powders as interlayer during transient liquid phase bonding (TLP bonding) were investigated. The interfacial morphologies and microstructures were studied by scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. First, to explore the optimum bonding time and temperature, nine samples were bonded without interlayers in a vacuum condition. Mechanical test results indicated that bonding at 560°C in 20 min returns the highest bond strength (84% of Al). This bonding condition was used to join ten samples with powder interlayers. Powders were prepared by mixing different combinations of Cu, Al (+Fe nanoparticles) and Zn. In the bonding zone, different Cu9Al4, CuAl, and CuAl2 intermetallic co-precipitate. The strongest bonding is formed in the sample with the 70Al (+Fe)-30Cu powder interlayer. Powder interlayers present thinner and more uniform intermetallic layers at the joint interface.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 261
Author(s):  
Wei Mao ◽  
Sol Lee ◽  
Ji Un Shin ◽  
Hyuk Sang Yoo

Surface initiated atom transfer radical polymerization (SI-ATRP) documented a simple but efficient technique to grow a dense polymer layer on any surface. Gold nanoparticles (AuNPs) give a broad surface to immobilize sulfhyryl group-containing initiators for SI-ATRP; in addition, AuNPs are the major nanoparticulate carriers for delivery of anti-cancer therapeutics, since they are biocompatible and bioinert. In this work, AuNPs with a disulfide initiator were polymerized with sulfoethyl methacrylate by SI-ATRP to decorate the particles with anionic corona, and branched polyethyeleneimine (PEI) and siRNA were sequentially layered onto the anionic corona of AuNP by electrostatic interaction. The in vitro anti-cancer effect confirmed that AuNP with anionic corona showed higher degrees of apoptosis as well as suppression of the oncogene expression in a siRNA dose-dependent manner. The in vivo study of tumor-bearing nude mice revealed that mice treated with c-Myc siRNA-incorporated AuNPs showed dramatically decreased tumor size in comparison to those with free siRNA for 4 weeks. Furthermore, histological examination and gene expression study revealed that the decorated AuNP significantly suppressed c-Myc expression. Thus, we envision that the layer-by-layer assembly on the anionic brushes can be potentially used to incorporate nucleic acids onto metallic particles with high transfection efficiency.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1571
Author(s):  
Pavel Grudinsky ◽  
Dmitry Zinoveev ◽  
Denis Pankratov ◽  
Artem Semenov ◽  
Maria Panova ◽  
...  

Red mud is an iron-containing waste of alumina production with high alkalinity. A promising approach for its recycling is solid-phase carbothermic roasting in the presence of special additives followed by magnetic separation. The crucial factor of the separation of the obtained iron metallic particles from gangue is sufficiently large iron grains. This study focuses on the influence of Na2SO4 addition on iron grain growth during carbothermic roasting of two red mud samples with different (CaO + MgO)/(SiO2 + Al2O3) ratio of 0.46 and 1.21, respectively. Iron phase distribution in the red mud and roasted samples were investigated in detail by Mössbauer spectroscopy method. Based on thermodynamic calculations and results of multifactorial experiments, the optimal conditions for the roasting of the red mud samples with (CaO + MgO)/(SiO2 + Al2O3) ratio of 0.46 and 1.21 were duration of 180 min with the addition of 13.65% Na2SO4 at 1150 °C and 1350 °C followed by magnetic separation that led to 97% and 83.91% of iron recovery, as well as 51.6% and 83.7% of iron grade, respectively. The mechanism of sodium sulfate effect on iron grain growth was proposed. The results pointed out that Na2SO4 addition is unfavorable for the red mud carbothermic roasting compared with other alkaline sulfur-free additives.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
R. Alexandrescu ◽  
I. Morjan ◽  
A. Tomescu ◽  
C. E. Simion ◽  
M. Scarisoreanu ◽  
...  

Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis ofFe(CO)5and methyl methacrylate (MMA) mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized) polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence ofNO2, CO, andCO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towardsNO2detection andNO2selectivity relatively to CO andCO2. An optimum working temperature of200°Cwas found.


Sign in / Sign up

Export Citation Format

Share Document