Digital Twin and Big Data

Author(s):  
Fei Tao ◽  
Meng Zhang ◽  
A.Y.C. Nee
Keyword(s):  
Big Data ◽  
2017 ◽  
Vol 94 (9-12) ◽  
pp. 3563-3576 ◽  
Author(s):  
Fei Tao ◽  
Jiangfeng Cheng ◽  
Qinglin Qi ◽  
Meng Zhang ◽  
He Zhang ◽  
...  
Keyword(s):  
Big Data ◽  

Author(s):  
Sendong Ren ◽  
Yunwu Ma ◽  
Ninshu Ma ◽  
Qian Chen ◽  
Haiyuan Wu

Abstract In the present research, a digital twin of coaxial one-side resistance spot welding (COS-RSW) was established for the real-time prediction of transient temperature field. A 3D model of COS-RSW joint was developed based on the in-house finite element (FE) code JWRIAN-SPOT. The experimental verified FE model was employed to generate the big data of temperature of COS-RSW process. Multiple dimension interpolation was applied to process database and output prediction. The FE model can predict the thermal cycle on COS-RSW joints under different parameter couples. The interpolation effect of individual welding parameters was discussed and a power weight judgement for welding time was essential to ensure accuracy. With the support of big data, the digital twin can provide visualization prediction of COS-RSW within 10 seconds, whereas numerical modelling needs at least 1 hour. The proposed application of digital twin has potential to improve the efficiency of process optimization in engineering.


2020 ◽  
Author(s):  
Zakharov L.A ◽  
Derksen L.A.

This article describes of hardware and software infrastructure that provides the implementation of digital double technology. The basic approaches to determining the technologies that make up the infrastructure for the implementation of the digital twin, as well as the benefits of implementing this technology are considered. The need for processing and storing big data, as well as the benefits of implementing this technology, is substantiated. Keywords: digital twin, digital model, big data, product lifecycle, cyber-physical system, automation, machine learning, smart maintenance.


2021 ◽  
Vol 3 ◽  
Author(s):  
Isuru A. Udugama ◽  
Merve Öner ◽  
Pau C. Lopez ◽  
Christan Beenfeldt ◽  
Christoph Bayer ◽  
...  

Digitalization in the form of Big Data and Digital Twin inspired applications are hot topics in today's bio-manufacturing organizations. As a result, many organizations are diverting resources (personnel and equipment) to these applications. In this manuscript, a targeted survey was conducted amongst individuals from the Danish biotech industry to understand the current state and perceived future obstacles in implementing digitalization concepts in biotech production processes. The survey consisted of 13 questions related to the current level of application of 1) Big Data analytics and 2) Digital Twins, as well as obstacles to expanding these applications. Overall, 33 individuals responded to the survey, a group spanning from bio-chemical to biopharmaceutical production. Over 73% of the respondents indicated that their organization has an enterprise-wide level plan for digitalization, it can be concluded that the digitalization drive in the Danish biotech industry is well underway. However, only 30% of the respondents reported a well-established business case for the digitalization applications in their organization. This is a strong indication that the value proposition for digitalization applications is somewhat ambiguous. Further, it was reported that digital twin applications (58%) were more widely used than Big Data analytic tools (37%). On top of the lack of a business case, organizational readiness was identified as a critical hurdle that needs to be overcome for both Digital Twin and Big Data applications. Infrastructure was another key hurdle for implementation, with only 6% of the respondents stating that their production processes were 100% covered by advanced process analytical technologies.


2021 ◽  
Vol 4 (S2) ◽  
Author(s):  
Daniel Anthony Howard ◽  
Zheng Ma ◽  
Christian Veje ◽  
Anders Clausen ◽  
Jesper Mazanti Aaslyng ◽  
...  

AbstractThe project aims to create a Greenhouse Industry 4.0 Digital Twin software platform for combining the Industry 4.0 technologies (IoT, AI, Big Data, cloud computing, and Digital Twins) as integrated parts of the greenhouse production systems. The integration provides a new disruptive approach for vertical integration and optimization of the greenhouse production processes to improve energy efficiency, production throughput, and productivity without compromising product quality or sustainability. Applying the Industry 4.0 Digital Twin concept to the Danish horticulture greenhouse industry provides digital models for simulating and evaluating the physical greenhouse facility’s performance. A Digital Twin combines modeling, AI, and Big Data analytics with IoT and traditional sensor data from the production and cloud-based enterprise data to predict how the physical twin will perform under varying operational conditions. The Digital Twins support the co-optimization of the production schedule, energy consumption, and labor cost by considering influential factors, including production deadlines, quality grading, heating, artificial lighting, energy prices (gas and electricity), and weather forecasts. The ecosystem of digital twins extends the state-of-the-art by adopting a scalable distributed approach of “system of systems” that interconnects Digital Twins in a production facility. A collection of specialized Digital Twins are linked together to describe and simulate all aspects of the production chain, such as overall production capacity, energy consumption, delivery dates, and supply processes. The contribution of this project is to develop an ecosystem of digital twins that collectively capture the behavior of an industrial greenhouse facility. The ecosystem will enable the industrial greenhouse facilities to become increasingly active participants in the electricity grid.


2021 ◽  
Vol 7 (1) ◽  
pp. 342
Author(s):  
Jia An ◽  
Chee Kai Chua ◽  
Vladimir Mironov

The application of machine learning (ML) in bioprinting has attracted considerable attention recently. Many have focused on the benefits and potential of ML, but a clear overview of how ML shapes the future of three-dimensional (3D) bioprinting is still lacking. Here, it is proposed that two missing links, Big Data and Digital Twin, are the key to articulate the vision of future 3D bioprinting. Creating training databases from Big Data curation and building digital twins of human organs with cellular resolution and properties are the most important and urgent challenges. With these missing links, it is envisioned that future 3D bioprinting will become more digital and in silico, and eventually strike a balance between virtual and physical experiments toward the most efficient utilization of bioprinting resources. Furthermore, the virtual component of bioprinting and biofabrication, namely, digital bioprinting, will become a new growth point for digital industry and information technology in future.


2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Javier Argota Sánchez-Vaquerizo

Large-scale microsimulations are increasingly resourceful tools for analysing in detail citywide effects and alternative scenarios of our policy decisions, approximating the ideal of ‘urban digital twins’. Yet, these models are costly and impractical, and there are surprisingly few published examples robustly validated with empirical data. This paper, therefore, presents a new large-scale agent-based traffic microsimulation for the Barcelona urban area using SUMO to show the possibilities and challenges of building these scenarios based on novel fine-grained empirical big data. It combines novel mobility data from real cell phone records with conventional surveys to calibrate the model comparing two different dynamic assignment methods for getting an operationally realistic and efficient simulation. Including through traffic and the use of a stochastic adaptive routing approach results in a larger 24-hour model closer to reality. Based on an extensive multi-scalar evaluation including traffic counts, hourly distribution of trips, and macroscopic metrics, this model expands and outperforms previous large-scale scenarios, which provides new operational opportunities in city co-creation and policy. The novelty of this work relies on the effective modelling approach using newly available data and the realistic robust evaluation. This allows the identification of the fundamental challenges of simulation to accurately capture real-world dynamical systems and to their predictive power at a large scale, even when fed by big data, as envisioned by the digital twin concept applied to smart cities.


Author(s):  
Ameer B. A. Alaasam

<p class="0abstract">Smart industry systems are based on integrating historical and current data from sensors with physical and digital systems to control product states. For example, Digital Twin (DT) system predicts the future state of physical assets using live simulation and controls the current state through real-time feedback. These systems rely on the ability to process big data stream to provide real-time responses. For, example it is estimated that one autonomous vehicle (AV) could produce 30 terabytes of data per day. AV will not be on the road before using an effective way to managing its big data and solve latency challenges. Cloud computing failed in the latency challenge, while Fog computing addresses it by moving parts of the computations from the Cloud to the edge of the network near the asset to reduce the latency. This work studies the challenges in data stream processing for DT in a fog environment. The challenges include fog architecture, the necessity of loosely-coupling design, the used virtual machine versus container, the stateful versus stateless operations, the stream processing tools, and live migration between fog nodes. The work also proposes a fog computing architecture and provides a vision of the prerequisites to meet the challenges.</p>


Sign in / Sign up

Export Citation Format

Share Document