The Ningaloo Niño/Niña: Mechanisms, relation with other climate modes and impacts

Author(s):  
Tomoki Tozuka ◽  
Ming Feng ◽  
Weiqing Han ◽  
Shoichiro Kido ◽  
Lei Zhang
Keyword(s):  
2021 ◽  
pp. 1
Author(s):  
Jacob Coburn ◽  
S.C. Pryor

AbstractThis work quantitatively evaluates the fidelity with which the Northern Annular Mode (NAM), Southern Annular Mode (SAM), Pacific-North American pattern (PNA), El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) and the first-order mode interactions are represented in Earth System Model (ESM) output from the CMIP6 archive. Several skill metrics are used as part of a differential credibility assessment (DCA) of both spatial and temporal characteristics of the modes across ESMs, ESM families and specific ESM realizations relative to ERA5. The spatial patterns and probability distributions are generally well represented but skill scores that measure the degree to which the frequencies of maximum variance are captured are consistently lower for most ESMs and climate modes. Substantial variability in skill scores manifests across realizations from individual ESMs for the PNA and oceanic modes. Further, the ESMs consistently overestimate the strength of the NAM-PNA first-order interaction and underestimate the NAM-AMO connection. These results suggest that the choice of ESM and ESM realizations will continue to play a critical role in determining climate projections at the global and regional scale at least in the near-term.


2021 ◽  
Author(s):  
Julia Pfeffer ◽  
Anny Cazenave ◽  
Anne Barnoud

<p>The acquisition of time-lapse satellite gravity measurements during the GRACE and GRACE Follow On (FO) missions revolutionized our understanding of the Earth system, through the accurate quantification of the mass transport at global and regional scales. Largely related to the water cycle, along with some geophysical signals, decadal trends and seasonal cycles dominate the mass transport signals, constituting about 80 % of the total variability measured during GRACE (FO) missions. We focus here on the interannual variability, constituting the remaining 20 % of the signal, once linear trends and seasonal signals have been removed. Empirical orthogonal functions (EOFs) highlight the most prominent signals, including short-lived signals triggered by major earthquakes, interannual oscillations in the water cycle driven by the El Nino Southern Oscillation (ENSO) and significant decadal variability, potentially related to the Pacific Decadal Oscillation (PDO). The interpretation of such signals remains however limited due to the arbitrary nature of the statistical decomposition in eigen values. To overcome these limitations, we performed a LASSO (Least Absolute Shrinkage and Selection Operator) regression of eight climate indices, including ENSO, PDO, NPGO (North Pacific Gyre Oscillation), NAO (North Atlantic Oscillation), AO (Arctic Oscillation), AMO (Atlantic Multidecadal Oscillation), SAM (Southern Annular Mode) and IOD (Indian Ocean Dipole). The LASSO regularization, coupled with a cross-validation, proves to be remarkably successful in the automatic selection of relevant predictors of the climate variability for any geographical location in the world. As expected, ENSO and PDO impact the global water cycle both on land and in the ocean. The NPGO is also a major actor of the global climate, showing similarities with the PDO in the North Pacific. AO is generally favored over NAO, especially in the Mediteranean Sea and North Atlantic. SAM has a preponderant influence on the interannual variability of ocean bottom pressures in the Southern Ocean, and, in association with ENSO, modulates the interannual variability of ice mass loss in West Antarctica. AMO has a strong influence on the interannual water cycle along the Amazon river, due to the exchange of moisture in tropical regions. IOD has little to no impact on the interannual water cycle. All together, climate modes generate changes in the water mass distribution of about 100 mm for land, 50 mm for shallow seas and 15 mm for oceans. Climate modes account for a secondary but significant portion of the total interannual variability (at maximum 60% for shallow seas, 50 % for land and 40% for oceans). While such processes are insufficient to fully explain the complex nature of the interannual variability of water mass transport on a global scale, climate modes can be used to correct the GRACE (FO) measurements for a significant part of the natural climate variability and uncover smaller signals masked by such water mass transports.</p>


2015 ◽  
Vol 11 (4) ◽  
pp. 3475-3565 ◽  
Author(s):  
S. G. A. Flantua ◽  
H. Hooghiemstra ◽  
M. Vuille ◽  
H. Behling ◽  
J. F. Carson ◽  
...  

Abstract. An improved understanding of present-day climate variability and change relies on high-quality data sets from the past two millennia. Global efforts to reconstruct regional climate modes are in the process of validating and integrating paleo-proxies. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to its unknown spatial and temporal coverage. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last two millennia. We identify the pollen records with the required temporal characteristics for PAGES-2 ka climate modelling and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local scale responses to climate modes, thus it is necessary to understand how vegetation-climate interactions might diverge under variable settings. Additionally, pollen is an excellent indicator of human impact through time. Evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. The LOTRED-SA-2 k initiative provides the ideal framework for the integration of the various paleoclimatic sub-disciplines and paleo-science, thereby jumpstarting and fostering multi-disciplinary research into environmental change on centennial and millennial time scales.


2021 ◽  
pp. 1-46
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Kristopher B. Karnauskas ◽  
Yuanlong Li ◽  
Tomoki Tozuka

AbstractThe subtropical Indian Ocean Dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical South Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) suggest that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the tropical Pacific or tropical Indian Oceans. By further comparing different ensemble members from the CESM1-LE, we find that a Warm Pool Dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the South Indian Ocean region.


Author(s):  
Jan Zalasiewicz ◽  
Mark Williams

There is a celebrated Flemish painting by Pieter Bruegel the Elder in the Kunsthistorisches Museum in Vienna. It depicts the age-old battle between Carnival and Lent. Carnival—a time of high spirits, led in this vision by a fat man on a beer-barrel, carousing and brandishing a pig’s head on a spit—is opposed by Lent, deflating the happy excitement and bringing in a time of sobriety and abstinence. Bruegel’s understanding of these opposed rhythms of rural life in the sixteenth-century Netherlands was acute: he was nicknamed ‘Peasant Bruegel’ for his habit of dressing like the local people, to mingle unnoticed with the crowds, all the better to observe their lives and activities. Bruegel’s vision of the age-old rhythm of life, in the form of an eternal oscillation between two opposing modes, may be taken to a wider stage. From the late Archaean to the end of the Proterozoic, the Earth has alternated between two climate modes. Long episodes of what may be regarded as rather dull stability, best exemplified by what some scientists refer to as the ‘boring billion’ of the mid-Proterozoic, are punctuated by the briefer, though more satisfyingly dramatic, glacial events. This alternation of Earth states persisted into the last half-billion years of this planet’s history—that is, into the current eon, the Phanerozoic. If anything, the pattern became more pronounced, as if it had become an integral part of the Earth’s slowly moving clockwork. There were three main Phanerozoic glaciations—or more precisely, there were three intervals of time when the world possessed large amounts of ice—though in each of these, the ice waxed and waned in a rather complex fashion, and none came close to a Snowball-like state. Thus, these intervals often now tend to be called ‘icehouse states’ rather than glaciations per se. Between these, there were rather longer intervals—greenhouse states—in which the world was considerably warmer; though again, this warmth was variable, and at times modest amounts of polar ice could form. Of the Earth’s Phanerozoic icehouse states, two are in the Palaeozoic Era: one, now termed the ‘Early Palaeozoic Icehouse’ centred on the boundary between the Ordovician and Silurian periods, peaking some 440 million years ago; and a later one centred on the Carboniferous and early Permian periods, 325 to 280 million years ago.


2019 ◽  
Vol 40 (6) ◽  
pp. 1493-1541 ◽  
Author(s):  
Weiqing Han ◽  
Detlef Stammer ◽  
Philip Thompson ◽  
Tal Ezer ◽  
Hindu Palanisamy ◽  
...  

2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


Sign in / Sign up

Export Citation Format

Share Document