DNA methylation and breast cancer risk: value of twin and family studies

2021 ◽  
pp. 67-83
Author(s):  
Shuai Li ◽  
Zhoufeng Ye ◽  
kConFab Investigators ◽  
John L. Hopper ◽  
Melissa C. Southey
2008 ◽  
Vol 17 (5) ◽  
pp. 1051-1059 ◽  
Author(s):  
David M. Euhus ◽  
Dawei Bu ◽  
Sara Milchgrub ◽  
Xian-Jin Xie ◽  
Aihua Bian ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3088 ◽  
Author(s):  
Kaoutar Ennour-Idrissi ◽  
Dzevka Dragic ◽  
Elissar Issa ◽  
Annick Michaud ◽  
Sue-Ling Chang ◽  
...  

Differential DNA methylation is a potential marker of breast cancer risk. Few studies have investigated DNA methylation changes in normal breast tissue and were largely confounded by cancer field effects. To detect methylation changes in normal breast epithelium that are causally associated with breast cancer occurrence, we used a nested case–control study design based on a prospective cohort of patients diagnosed with a primary invasive hormone receptor-positive breast cancer. Twenty patients diagnosed with a contralateral breast cancer (CBC) were matched (1:1) with 20 patients who did not develop a CBC on relevant risk factors. Differentially methylated Cytosine-phosphate-Guanines (CpGs) and regions in normal breast epithelium were identified using an epigenome-wide DNA methylation assay and robust linear regressions. Analyses were replicated in two independent sets of normal breast tissue and blood. We identified 7315 CpGs (FDR < 0.05), 52 passing strict Bonferroni correction (p < 1.22 × 10−7) and 43 mapping to known genes involved in metabolic diseases with significant enrichment (p < 0.01) of pathways involving fatty acids metabolic processes. Four differentially methylated genes were detected in both site-specific and regions analyses (LHX2, TFAP2B, JAKMIP1, SEPT9), and three genes overlapped all three datasets (POM121L2, KCNQ1, CLEC4C). Once validated, the seven differentially methylated genes distinguishing women who developed and who did not develop a sporadic breast cancer could be used to enhance breast cancer risk-stratification, and allow implementation of targeted screening and preventive strategies that would ultimately improve breast cancer prognosis.


2020 ◽  
Vol 127 (4) ◽  
pp. 338-350
Author(s):  
Maria Wielsøe ◽  
Letizia Tarantini ◽  
Valentina Bollati ◽  
Manhai Long ◽  
Eva Cecilie Bonefeld‐Jørgensen

2011 ◽  
Author(s):  
Xinran Xu ◽  
Marilie D. Gammon ◽  
James G. Wetmur ◽  
Susan L. Teiltelbaum ◽  
Patrick T. Bradshaw ◽  
...  

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kaoutar Ennour-Idrissi ◽  
Dzevka Dragic ◽  
Francine Durocher ◽  
Caroline Diorio

Abstract Background DNA methylation is a potential biomarker for early detection of breast cancer. However, robust evidence of a prospective relationship between DNA methylation patterns and breast cancer risk is still lacking. The objective of this study is to provide a systematic analysis of the findings of epigenome-wide DNA methylation studies on breast cancer risk, in light of their methodological strengths and weaknesses. Methods We searched major databases (MEDLINE, EMBASE, Web of Science, CENTRAL) from inception up to 30th June 2019, for observational or intervention studies investigating the association between epigenome-wide DNA methylation (using the HM450k or EPIC BeadChip), measured in any type of human sample, and breast cancer risk. A pre-established protocol was drawn up following the Cochrane Reviews rigorous methodology. Study selection, data abstraction, and risk of bias assessment were performed by at least two investigators. A qualitative synthesis and systematic comparison of the strengths and weaknesses of studies was performed. Results Overall, 20 studies using the HM450k BeadChip were included, 17 of which had measured blood-derived DNA methylation. There was a consistent trend toward an association of global blood-derived DNA hypomethylation and higher epigenetic age with higher risk of breast cancer. The strength of associations was modest for global hypomethylation and relatively weak for most of epigenetic age algorithms. Differences in length of follow-up periods may have influenced the ability to detect associations, as studies reporting follow-up periods shorter than 10 years were more likely to observe an association with global DNA methylation. Probe-wise differential methylation analyses identified between one and 806 differentially methylated CpGs positions in 10 studies. None of the identified differentially methylated sites overlapped between studies. Three studies used breast tissue DNA and suffered major methodological issues that precludes any conclusion. Overall risk of bias was critical mainly because of incomplete control of confounding. Important issues relative to data preprocessing could have limited the consistency of results. Conclusions Global DNA methylation may be a short-term predictor of breast cancer risk. Further studies with rigorous methodology are needed to determine spatial distribution of DNA hypomethylation and identify differentially methylated sites associated with risk of breast cancer. Prospero registration number CRD42020147244


2019 ◽  
Vol 111 (10) ◽  
pp. 1051-1058 ◽  
Author(s):  
Jacob K Kresovich ◽  
Zongli Xu ◽  
Katie M O’Brien ◽  
Clarice R Weinberg ◽  
Dale P Sandler ◽  
...  

Abstract Background Age is one of the strongest predictors of cancer, chronic disease, and mortality, but biological responses to aging differ among people. Epigenetic DNA modifications have been used to estimate “biological age,” which may be a useful predictor of disease risk. We tested this hypothesis for breast cancer. Methods Using a case-cohort approach, we measured baseline blood DNA methylation of 2764 women enrolled in the Sister Study, 1566 of whom subsequently developed breast cancer after an average of 6 years. Using three previously established methylation-based “clocks” (Hannum, Horvath, and Levine), we defined biological age acceleration for each woman by comparing her estimated biological age with her chronological age. Hazard ratios and 95% confidence intervals for breast cancer risk were estimated using Cox regression models. All statistical tests were two-sided. Results Each of the three clocks showed that biological age acceleration was statistically significantly associated with increased risk of developing breast cancer (5-year age acceleration, Hannum’s clock: hazard ratio [HR] = 1.10, 95% confidence interval [CI] = 1.00 to 1.21, P = .04; Horvath’s clock: HR = 1.08, 95% CI = 1.00 to 1.17, P = .04; Levine’s clock: HR = 1.15, 95% CI = 1.07 to 1.23, P < .001). For Levine’s clock, each 5-year acceleration in biological age corresponded with a 15% increase in breast cancer risk. Although biological age may accelerate with menopausal transition, age acceleration in premenopausal women independently predicted breast cancer. Case-only analysis suggested that, among women who develop breast cancer, increased age acceleration is associated with invasive cancer (odds ratio for invasive = 1.09, 95% CI = 0.98 to 1.22, P = .10). Conclusions DNA methylation-based measures of biological age may be important predictors of breast cancer risk.


2017 ◽  
Vol 168 (1) ◽  
pp. 241-248 ◽  
Author(s):  
Arielle S. Gillman ◽  
Casey K. Gardiner ◽  
Claire E. Koljack ◽  
Angela D. Bryan

2017 ◽  
Vol 2017 ◽  
pp. 1-25 ◽  
Author(s):  
Nayha Chopra-Tandon ◽  
Haotian Wu ◽  
Kathleen F. Arcaro ◽  
Susan R. Sturgeon

It is not yet clear whether white blood cell DNA global methylation is associated with breast cancer risk. In this review we examine the relationships between multiple breast cancer risk factors and three markers of global DNA methylation:LINE-1, 5-mdC, andAlu. A literature search was conducted using Pubmed up to April 1, 2016, using combinations of relevant outcomes such as “WBC methylation,” “blood methylation,” “bloodLINE-1methylation,” and a comprehensive list of known and suspected breast cancer risk factors. Overall, the vast majority of reports in the literature have focused onLINE-1. There was reasonably consistent evidence across the studies examined that males have higher levels ofLINE-1methylation in WBC DNA than females. None of the other demographic, lifestyle, dietary, or health condition risk factors were consistently associated withLINE-1DNA methylation across studies. With the possible exception of sex, there was also little evidence that the wide range of breast cancer risk factors we examined were associated with either of the other two global DNA methylation markers: 5-mdC andAlu. One possible implication of the observed lack of association between global WBC DNA methylation and known breast cancer risk factors is that the association between global WBC DNA methylation and breast cancer, if it exists, is due to a disease effect.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Minyuan Chen ◽  
Ee Ming Wong ◽  
Tuong L. Nguyen ◽  
Gillian S. Dite ◽  
Jennifer Stone ◽  
...  

Abstract DNA methylation-based biological age (DNAm age), as well as genome-wide average DNA methylation, have been reported to predict breast cancer risk. We aimed to investigate the associations between these DNA methylation-based risk factors and 18 conventional breast cancer risk factors for disease-free women. A sample of 479 individuals from the Australian Mammographic Density Twins and Sisters was used for discovery, a sample of 3354 individuals from the Melbourne Collaborative Cohort Study was used for replication, and meta-analyses pooling results from the two studies were conducted. DNAm age based on three epigenetic clocks (Hannum, Horvath and Levine) and genome-wide average DNA methylation were calculated using the HumanMethylation 450 K BeadChip assay data. The DNAm age measures were positively associated with body mass index (BMI), smoking, alcohol drinking and age at menarche (all nominal P < 0.05). Genome-wide average DNA methylation was negatively associated with smoking and number of live births, and positively associated with age at first live birth (all nominal P < 0.05). The association of DNAm age with BMI was also evident in within-twin-pair analyses that control for familial factors. This study suggests that some lifestyle and hormonal risk factors are associated with these DNA methylation-based breast cancer risk factors, and the observed associations are unlikely to be due to familial confounding but are likely causal. DNA methylation-based risk factors could interplay with conventional risk factors in modifying breast cancer risk.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Clara Bodelon ◽  
Srikant Ambatipudi ◽  
Pierre-Antoine Dugué ◽  
Annelie Johansson ◽  
Joshua N. Sampson ◽  
...  

Abstract Background Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. Methods We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis (< 50, ≥ 50), estrogen receptor (ER) status (+/−), and time since blood collection (< 5, 5–10, > 10 years). The false discovery rate (q value) was used to account for multiple testing. Results The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). Conclusions Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk.


Sign in / Sign up

Export Citation Format

Share Document