Health benefits of inulin-type fructan on gut microbiome, digestive health, immunity, and nutrition

2022 ◽  
pp. 365-376
Author(s):  
Orie Yoshinari
2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Breann Abernathy ◽  
Ran Blekhman ◽  
Tonya Schoenfuss ◽  
Daniel Gallaher

Abstract Objectives We investigated the intersection between the gut microbiome and gene expression of colon and liver tissues in rats, using prebiotic dietary fibers to modulate the gut microbiome and elicit health benefits to the host. Methods Male Wistar rats were fed normal fat (NF) or high fat (HF, 51% fat by kcal) diets containing various fibers (6% fiber + 3% cellulose, by weight); including cellulose (NFC and HFC, non-fermentable), polylactose (HFPL, a novel prebiotic), and polydextrose (HFPD, an established prebiotic). After 10 weeks, tissues were harvested. Transcriptome analysis was performed by RNA sequencing of colon and liver tissues, and cecal contents were utilized for 16S microbiome sequencing. Analyses were conducted in R using DESeq2, DADA2, and phyloseq. Results Analysis of the gut microbiome revealed an increased abundance of probiotic genera, Bifidobacterium and Lactobacillus, in HFPL fed animals when compared to all other groups. These species are galactose fermenters which synthesize short chain fatty acids (SCFAs). This increased taxonomical abundance correlated with an increased FFar3 (SCFA receptor) expression in the colon. This suggests increased FFar3 signaling, leading to increased energy expenditure and GLP-1 and PYY secretion. Additionally, HFPL and HFPD groups had a decreased Firmicutes: Bacteroidetes ratio, which is associated with reduced adiposity due to the Bacteroidetes phylum being poor carbohydrate metabolizers, resulting in reduced energy uptake, yet increased SCFA synthesis. Bacteriodetes are also able to survive in SCFA and bile acid rich environments and are involved in the recycling of bile acids which negatively regulates cholesterol synthesis. This corresponds to reduced liver cholesterol and cholesterol synthesis pathway expression in the HFPL group. Further, liver gene expression revealed reduced lipid synthesis and increased lipid oxidation pathway gene expression in the HFPL group, corresponding to the reduction in fatty liver found in this group. Conclusions Prebiotic dietary fibers elicit changes in the gut microbiome and gene expression in liver and colon. Changes in gene expression correlated with the abundance of beneficial gut bacteria, providing a connection between the gut microbiome and health benefits to the host. Funding Sources Midwest Dairy Association. Supporting Tables, Images and/or Graphs


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Sang Gil Lee ◽  
Cao Lei ◽  
Melissa Melough ◽  
Junichi Sakaki ◽  
Kendra Maas ◽  
...  

Abstract Objectives Blackcurrant, an anthocyanin-rich berry, has multiple health benefits. The purpose of this study was to examine the impacts of blackcurrant supplementation and aging on gut bacterial communities in female mice. Methods Three-month and 18-month old female mice were provided standard chow diets with or without anthocyanin-rich blackcurrant extract (BC) (1% w/w) for four months. Upon study completion, fecal samples were collected directly from the animals’ colons. Microbiome DNA was extracted from the fecal samples and the V3-V4 regions of their 16S rRNA gene were amplified and sequenced using Results Taxonomic analysis showed a significantly decrease in alpha diversity in aged female mice, compared to young counterparts. BC consumption did not alter the alpha diversity in either young or aged mice compared to control diets. For beta diversity, we observed the clustering was associated with age but not diet. The phylogenic abundance analysis showed that the relative abundance of several phyla, including Firmicutes, Bacteroidetes, Cyanobacteria, Proteobacteria, and Tenericutes was higher in aged compared to young mice. Among them, the abundance of Firmicutes was downregulated by BC in the young but not the aged mice. The abundance of Bacteroidetes was increased by BC in both the young and the aged groups. Noticeably, Verrucomicrobia was the only phylum whose relative abundance was upregulated in the aged female mice compared to the young mice. Meanwhile, its relative abundance in the aged group was suppressed by BC. Interestingly, Desulfovibrio, which is the most representative sulfate-reducing genus, was detectable only in young female mice, and BC increased its relative abundance. Conclusions Our results characterized the gut microbiome compositions in young and aged female mice, and indicated that the gut microbiome of young and aged female mice responded differently to four month BC administration. Through additional research, the microbial alterations observed in this study should be further investigated to inform our understanding of the effect of BC on the gut microbiome, the possible health benefits related to these changes, and the differing effects of BC supplementation across populations. Funding Sources This study was supported by the USDA NIFA Seed Grant (#2016-67018-24492) and the University of Connecticut Foundation Esperance Funds to Dr. Ock K. Chun. We thank the National Institute on Aging for providing aged mice for the project and Just the Berries Ltd. for providing the blackcurrant extract.


2014 ◽  
Vol 112 (S2) ◽  
pp. S44-S49 ◽  
Author(s):  
Devin J. Rose

The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3364
Author(s):  
David R. Hill ◽  
Jo May Chow ◽  
Rachael H. Buck

Breastfeeding is the best source of nutrition during infancy and is associated with a broad range of health benefits. However, there remains a significant and persistent need for innovations in infant formula that will allow infants to access a wider spectrum of benefits available to breastfed infants. The addition of human milk oligosaccharides (HMOs) to infant formulas represents the most significant innovation in infant nutrition in recent years. Although not a direct source of calories in milk, HMOs serve as potent prebiotics, versatile anti-infective agents, and key support for neurocognitive development. Continuing improvements in food science will facilitate production of a wide range of HMO structures in the years to come. In this review, we evaluate the relationship between HMO structure and functional benefits. We propose that infant formula fortification strategies should aim to recapitulate a broad range of benefits to support digestive health, immunity, and cognitive development associated with HMOs in breastmilk. We conclude that acetylated, fucosylated, and sialylated HMOs likely confer important health benefits through multiple complementary mechanisms of action.


2021 ◽  
Vol 50 (8) ◽  
Author(s):  
Samantha Saul ◽  
Jessika Fuessel ◽  
Joseph Runde

2020 ◽  
Vol 8 (2) ◽  
pp. 85-89
Author(s):  
Vishal Singh ◽  
Matam Vijay-Kumar

Abstract Consumption of processed foods—which are generally composed of nutritionally starved refined ingredients—has increased exponentially worldwide. A rise in public health awareness that low fiber intake is strongly linked to new-age disorders has spurred food manufacturers to fortify processed foods with refined dietary fibers (RDFs). Consumption of whole foods rich in natural fibers undoubtedly confers an array of health benefits. However, it is not clear whether RDFs extracted from the whole plant, kernel, and fruit peels exert similar physiological effects to their naturally occurring counterparts. Recent studies caution that RDFs are not universally beneficial and that inappropriate consumption of RDFs may risk both gastrointestinal and liver health. Herein, we briefly summarize the beneficial and detrimental effects of RDFs on digestive health and discuss the contribution of metabolites derived from microbial fermentation of RDFs in driving such positive or negative health outcomes.


2019 ◽  
Vol 17 (2) ◽  
pp. 215-217 ◽  
Author(s):  
Ashwin N. Ananthakrishnan ◽  
Amit G. Singal ◽  
Lin Chang

Sign in / Sign up

Export Citation Format

Share Document