scholarly journals Impact of whole grains on the gut microbiota: the next frontier for oats?

2014 ◽  
Vol 112 (S2) ◽  
pp. S44-S49 ◽  
Author(s):  
Devin J. Rose

The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


2021 ◽  
Vol 12 (19) ◽  
pp. 8850-8866
Author(s):  
Zoi Katsirma ◽  
Eirini Dimidi ◽  
Ana Rodriguez-Mateos ◽  
Kevin Whelan

A summary of the mechanisms of action by which fruit products confer effects on the human gut function, motility and the gut microbiome, as well as an exploration of the effects of processing on the active nutrient content and efficacy of fruits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashish Kumar Srivastava ◽  
Vishwajeet Rohil ◽  
Brij Bhushan ◽  
Malleswara Rao Eslavath ◽  
Harshita Gupta ◽  
...  

AbstractShip voyage to Antarctica is a stressful journey for expedition members. The response of human gut microbiota to ship voyage and a feasible approach to maintain gut health, is still unexplored. The present findings describe a 24-day long longitudinal study involving 19 members from 38th Indian Antarctic Expedition, to investigate the impact of ship voyage and effect of probiotic intervention on gut microbiota. Fecal samples collected on day 0 as baseline and at the end of ship voyage (day 24), were analyzed using whole genome shotgun sequencing. Probiotic intervention reduced the sea sickness by 10% compared to 44% in placebo group. The gut microbiome in placebo group members on day 0 and day 24, indicated significant alteration compared to a marginal change in the microbial composition in probiotic group. Functional analysis revealed significant alterations in carbohydrate and amino acid metabolism. Carbohydrate-active enzymes analysis represented functional genes involved in glycoside hydrolases, glycosyltransferases and carbohydrate binding modules, for maintaining gut microbiome homeostasis. Suggesting thereby the possible mechanism of probiotic in stabilizing and restoring gut microflora during stressful ship journey. The present study is first of its kind, providing a feasible approach for protecting gut health during Antarctic expedition involving ship voyage.


2022 ◽  
pp. 285-338
Author(s):  
David Torrallardona ◽  
◽  
Joan Tarradas ◽  
Núria Tous ◽  
◽  
...  

Exogenous enzymes are used in pig diets to improve the availability and digestibility of some non-accessible nutrients. As result of this enhanced digestion, short fragments of these molecules may become available in the distal foregut and the hindgut and modulate microbiota composition, gut barrier integrity, and overall animal health. This chapter reviews the effects of different exogenous enzymes (carbohydrases, phytases, proteases and lipases) on nutrient digestibility, gut microbial ecology, and barrier function and immunity of pigs at different ages (sows, weaned piglets, growing/fattening pigs). Exogenous enzymes are usually included into feeds as blends so they can complement each other’s activities and further improve the accessibility to non-digestible structures. Exogenous enzymes used in feed manufacturing for more than 30 years, initially to improve the digestive function of non-digestible nutrients (i.e. fibre, phytic acid, etc.), more recently other indirect actions on the regulation of gut microbiota and gut health have gained interest.


2007 ◽  
pp. 219-228 ◽  
Author(s):  
David Topping ◽  
Anthony Bird ◽  
Shusuke Toden ◽  
Michael Conlon ◽  
Manny Noakes ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Samiullah Khan ◽  
Kapil K. Chousalkar

Abstract Background The chicken gut microbiota passes through different stages of maturation; therefore, strengthening it with well characterised probiotics increases its resilience required for optimum gut health and wellbeing. However, there is limited information on the interaction of Bacillus based probiotics with gut microbial community members in cage free laying chickens both in rearing and production phases of life. In the current study, we investigated the changes in the gut microbiome of free range hens in the field after Bacillus based probiotic supplementation. Results Overall, at phylum level, probiotic supplementation increased the populations of Bacteroidetes and Proteobacteria mainly at the expense of Firmicutes. The population of Bacteroidetes significantly increased during the production as compared to the rearing phase, and its higher population in the probiotic-supplemented chickens reflects the positive role of Bacillus based probiotic in gut health. Core differences in the beta diversity suggest that probiotic supplementation decreased microbial compositionality. The non-significant difference in alpha diversity between the probiotic and control chickens showed that the composition of community structure did not change. No Salmonella spp. were isolated from the probiotic supplemented birds. Egg internal quality was significantly higher, while egg production and body weight did not differ. Functional prediction data showed that probiotic supplementation enriched metabolic pathways, such as vitamin B6 metabolism, phenylpropanoid biosynthesis, monobactam biosynthesis, RNA degradation, retinol metabolism, pantothenate and CoA biosynthesis, phosphonate and phosphinate metabolism, AMPK signaling pathway, cationic antimicrobial peptide (CAMP) resistance and tyrosine metabolism. Conclusions Overall, age was the main factor affecting the composition and diversity of gut microbiota, where probiotic supplementation improved the abundance of many useful candidates in the gut microbial communities. The generated baseline data in the current study highlights the importance of the continuous use of Bacillus based probiotic for optimum gut health and production.


Author(s):  
Kiran Thakur ◽  
Jian Guo Zhang ◽  
Zhao-Jun Wei ◽  
Narendra Kumar ◽  
Sudhir Kumar Tomar ◽  
...  

The phrase “Let food be the medicine and medicine be the food,” coined by Hippocrates over 2500 years ago is receiving a lot of interest today as food scientists and consumers realize the many health benefits of certain foods. Lately, consumer's choice in food consumption has improved considerably due to the acknowledgment of the fact that foods influence the overall human health. There has been a growing interest over the years to explore beneficial gut microbiota and different interventions are devised to modulate the microbiota through the use of probiotics, prebiotics and synbiotics. Besides improving intestinal health, functional food ingredients also have the potential to restore the gut homeostasis during intestinal disorders conditions. The human gut has a marked effect on the nutritional and health status of the host due to the presence of diverse bacterial species, which develop important metabolic and immune functions. This makes intestinal microbiota a target for nutritional and therapeutic interventions and a factor which influence the biological activity of other food compounds .This chapter attempts to highlight how the reciprocal interactions take place between the gut microbiota and functional food components and how these interactions affect human health and manage various metabolic disorders.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenjun Liu ◽  
Jiachao Zhang ◽  
Chunyan Wu ◽  
Shunfeng Cai ◽  
Weiqiang Huang ◽  
...  

Abstract The human gut microbiota varies considerably among world populations due to a variety of factors including genetic background, diet, cultural habits and socioeconomic status. Here we characterized 110 healthy Mongolian adults gut microbiota by shotgun metagenomic sequencing and compared the intestinal microbiome among Mongolians, the Hans and European cohorts. The results showed that the taxonomic profile of intestinal microbiome among cohorts revealed the Actinobaceria and Bifidobacterium were the key microbes contributing to the differences among Mongolians, the Hans and Europeans at the phylum level and genus level, respectively. Metagenomic species analysis indicated that Faecalibacterium prausnitzii and Coprococcus comeswere enrich in Mongolian people which might contribute to gut health through anti-inflammatory properties and butyrate production, respectively. On the other hand, the enriched genus Collinsella, biomarker in symptomatic atherosclerosis patients, might be associated with the high morbidity of cardiovascular and cerebrovascular diseases in Mongolian adults. At the functional level, a unique microbial metabolic pathway profile was present in Mongolian’s gut which mainly distributed in amino acid metabolism, carbohydrate metabolism, energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. We can attribute the specific signatures of Mongolian gut microbiome to their unique genotype, dietary habits and living environment.


Author(s):  
Prasat Kittakoop

Trillions of microorganisms with a complex and diverse community are in the human gastrointestinal tract. Gut microbial genomes have much more genes than human genome, thus having a variety of enzymes for many metabolic activities; therefore, gut microbiota is recognized as an “organ” that has essential functions to human health. There are interactions between host and gut microbiome, and there are correlations between gut microbiome in the healthy state and in certain disease states, such as cancer, liver diseases, diabetes, and obesity. Gut microbiota can produce metabolites from nutrients of dietary sources and from drug metabolisms; these metabolites, for example, short-chain fatty acids (SCFAs), have substantial effects on human health. Drug-microbiome interactions play a crucial role in therapeutic efficiency. Some drugs are able to change compositions of gut microbiota, which can lead to either enhance or reduce therapeutic efficiency. This chapter provides an overview of roles of gut microbiota in human health and diseases and recent research studies on the metabolism or toxicity of drugs and natural products. Since gut bacteria considerably contribute to drug metabolism, research on the influence of gut microbiome on drug candidates (or natural products) should be part of the drug development processes.


2020 ◽  
Author(s):  
Chen Wei ◽  
Jiandui Mi ◽  
Jingyun Ma ◽  
Yiming Jiang ◽  
Li Deng ◽  
...  

Abstract Background: The acquisition and development of the mammalian microbiome early in life are critical to establish a healthy host-microbiome symbiosis. The maternal and environmental microbial reservoirs are considered the main sources of microbial communities in newborn mammals. However, the timely relative contribution of various microbial sources to the colonization of the gut microbiota in newborn piglets remains unclear. The aim of this study was to investigate the influence of the sow and delivery environment microbes on nursing piglets from birth through weaning.Results: We longitudinally sampled the microbiota of 20 sow-piglet pairs (three piglets per sow) from multiple body sites and the surrounding weaning environment from birth to 28 days postpartum (1,119 samples in total) reared under identical conditions. Source-tracking analysis revealed that the contribution of various microbial sources to the piglet gut microbiome gradually changed over time. The neonatal microbiota was initially sparsely populated and predominantly comprised taxa from the maternal vaginal microbiota that increased gradually from 69.0% at day 0 to 89.3% at day 3 and dropped to 0.28% at day 28. As the piglets aged, the major microbiota community patterns were most strongly associated with the sow feces and slatted floor, with contributions increasing from 0.52% and 9.6% at day 0 to 62.1% and 33.8% at day 28, respectively. The intestinal microbial diversity, composition and function significantly changed as the piglets aged, and 30 age-discriminatory bacterial taxa were identified with distinctive time-dependent shifts in their relative abundance, which likely reflected the effect of the maternal and environmental microbial sources on the selection and adaptation of the piglet gut microbiota.Conclusions: Vaginal microbiota is the primary source of the gut microbiota in piglets within three days after birth and are gradually replaced by the sow fecal and slatted floor microbiota over time. These finding may offer novel strategies to promote the establishment of exogenous symbiotic microbes to improve piglet gut health.


Sign in / Sign up

Export Citation Format

Share Document