Stress-induced senescence of tubular cells

2022 ◽  
pp. 241-252
Author(s):  
David P. Baird ◽  
David A. Ferenbach ◽  
Joseph V. Bonventre
Keyword(s):  
1977 ◽  
Vol 16 (03) ◽  
pp. 100-103 ◽  
Author(s):  
C. Schümichen ◽  
J. Waiden ◽  
G. Hoffmann

SummaryThe kinetic data of two different 99mTc-Sn-pyrophosphate compounds (compound A and B) were evaluated in non-adult rats. Only compound A concentrated in bone. Both compounds dispersed rapidly in the intravascular as well as the extravascular space. The plasma protein bond of both compounds increased with time after injection and impaired both the renal clearance of both compounds and the bone clearance of compound A. The renal clearance of both compounds was somewhat above that of 5 1Cr-EDTA. It is concluded that compound A and B is mainly excreted by glomerular filtration. About one fourth of the glomerular filtrate of compound B is reabsorbed and accumulated by the tubular cells.


1989 ◽  
Vol 257 (5) ◽  
pp. C971-C975 ◽  
Author(s):  
H. A. Skopicki ◽  
K. Fisher ◽  
D. Zikos ◽  
G. Flouret ◽  
D. R. Peterson

These studies were performed to determine if a low-affinity carrier is present in the luminal membrane of proximal tubular cells for the transport of the dipeptide, pyroglutamyl-histidine (pGlu-His). We have previously described the existence of a specific, high-affinity, low-capacity [transport constant (Kt) = 9.3 X 10(-8) M, Vmax = 6.1 X 10(-12) mol.mg-1.min-1] carrier for pGlu-His in renal brush-border membrane vesicles. In the present study, we sought to demonstrate that multiple carriers exist for the transport of a single dipeptide by determining whether a low-affinity carrier also exists for the uptake of pGlu-His. Transport of pGlu-His into brush-border membrane vesicles was saturable over the concentration range of 10(-5)-10(-3) M, yielding a Kt of 6.3 X 10(-5) M and a Vmax of 2.2 X 10(-10) mol.mg-1.min-1. Uptake was inhibited by the dipeptides glycyl-proline, glycyl-sarcosine, and carnosine but not by the tripeptide pyroglutamyl-histidyl-prolinamide. We conclude that 1) pGlu-His is transported across the luminal membrane of the proximal tubule by multiple carriers and 2) the lower affinity carrier, unlike the higher affinity carrier, is nonspecific with respect to other dipeptides.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Coral García-Pastor ◽  
Selma Benito-Martínez ◽  
Ricardo J. Bosch ◽  
Ana B. Fernández-Martínez ◽  
Francisco J. Lucio-Cazaña

AbstractProximal tubular cells (PTC) are particularly vulnerable to hypoxia-induced apoptosis, a relevant factor for kidney disease. We hypothesized here that PTC death under hypoxia is mediated by cyclo-oxygenase (COX-2)-dependent production of prostaglandin E2 (PGE2), which was confirmed in human proximal tubular HK-2 cells because hypoxia (1% O2)-induced apoptosis (i) was prevented by a COX-2 inhibitor and by antagonists of prostaglandin (EP) receptors and (ii) was associated to an increase in intracellular PGE2 (iPGE2) due to hypoxia-inducible factor-1α-dependent transcriptional up-regulation of COX-2. Apoptosis was also prevented by inhibitors of the prostaglandin uptake transporter PGT, which indicated that iPGE2 contributes to hypoxia-induced apoptosis (on the contrary, hypoxia/reoxygenation-induced PTC death was exclusively due to extracellular PGE2). Thus, iPGE2 is a new actor in the pathogenesis of hypoxia-induced tubular injury and PGT might be a new therapeutic target for the prevention of hypoxia-dependent lesions in renal diseases.


Author(s):  
Shao‐Hua Yu ◽  
Kalaiselvi Palanisamy ◽  
Kuo‐Ting Sun ◽  
Xin Li ◽  
Yao‐Ming Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document