Role of hybrid systems and their importance in the dye degradation: trend and future aspect

Author(s):  
Sonalika Sonal ◽  
Brijesh Kumar Mishra
2021 ◽  
Author(s):  
Harsha Bantawal ◽  
Sandhya U. Shenoy ◽  
Denthaje Krishna Bhat

CaTiO3 has attracted enormous interest in the field of photocatalytic dye degradation and water splitting owing to its low cost, excellent physicochemical stability and structural tunability. Herein, we have developed...


Friction ◽  
2021 ◽  
Author(s):  
Pengcheng Li ◽  
Chongyang Tang ◽  
Xiangheng Xiao ◽  
Yanmin Jia ◽  
Wanping Chen

AbstractThe friction between nanomaterials and Teflon magnetic stirring rods has recently drawn much attention for its role in dye degradation by magnetic stirring in dark. Presently the friction between TiO2 nanoparticles and magnetic stirring rods in water has been deliberately enhanced and explored. As much as 1.00 g TiO2 nanoparticles were dispersed in 50 mL water in 100 mL quartz glass reactor, which got gas-closed with about 50 mL air and a Teflon magnetic stirring rod in it. The suspension in the reactor was magnetically stirred in dark. Flammable gases of 22.00 ppm CO, 2.45 ppm CH4, and 0.75 ppm H2 were surprisingly observed after 50 h of magnetic stirring. For reference, only 1.78 ppm CO, 2.17 ppm CH4, and 0.33 ppm H2 were obtained after the same time of magnetic stirring without TiO2 nanoparticles. Four magnetic stirring rods were simultaneously employed to further enhance the stirring, and as much as 30.04 ppm CO, 2.61 ppm CH4, and 8.98 ppm H2 were produced after 50 h of magnetic stirring. A mechanism for the catalytic role of TiO2 nanoparticles in producing the flammable gases is established, in which mechanical energy is absorbed through friction by TiO2 nanoparticles and converted into chemical energy for the reduction of CO2 and H2O. This finding clearly demonstrates a great potential for nanostructured semiconductors to utilize mechanical energy through friction for the production of flammable gases.


2014 ◽  
Vol 486 ◽  
pp. 159-169 ◽  
Author(s):  
Pankaj Raizada ◽  
Pardeep Singh ◽  
Amit Kumar ◽  
Gaurav Sharma ◽  
Brijesh Pare ◽  
...  

Author(s):  
Veena Gayathri Krishnaswamy

The limited availability of fresh water is a global crisis. The growing consumption of fresh water due to anthropogenic activities has taken its toll on available water resources. Unfortunately, water bodies are still used as sinks for waste water from domestic and industrial sources. Azo dyes account for the majority of all dye stuffs, produced because they are extensively used in the textile, paper, food, leather, cosmetics, and pharmaceutical industries. Bacterial degradation of azo dyes under certain environmental conditions has gained momentum as a method of treatment, as these are inexpensive, eco-friendly, and can be applied to wide range of such complex dyes. The enzymatic approach has attracted much interest with regard to degradation of azo dyes from wastewater. The oxido-reductive enzymes are responsible for generating highly reactive free radicals that undergo complex series of spontaneous cleavage reactions, due to the susceptibility of enzymes to inactivation in the presence of the other chemicals. The oxidoreductive enzymes, such as lignin peroxidase, laccases, tyrosinase, azoreductase, riboflavin reductive, polyphenol oxidase, and aminopyrine n-demethylase, have been mainly utilized in the bacterial degradation of azo dye. Along with the reductive enzymes, some investigators have demonstrated the involvement in some other enzymes, such as Lignin peroxides and other enzymes. This chapter reviews the importance of enzymes in dye degradation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1496 ◽  
Author(s):  
Dominik Benz ◽  
Hao Van Bui ◽  
Hubertus T. Hintzen ◽  
Michiel T. Kreutzer ◽  
J. Ruud van Ommen

Photocatalysts for water purification typically lack efficiency for practical applications. Here we present a multi-component (Pt:SiO2:TiO2(P25)) material that was designed using knowledge of reaction mechanisms of mono-modified catalysts (SiO2:TiO2, and Pt:TiO2) combined with the potential of atomic layer deposition (ALD). The deposition of ultrathin SiO2 layers on TiO2 nanoparticles, applying ALD in a fluidized bed reactor, demonstrated in earlier studies their beneficial effects for the photocatalytic degradation of organic pollutants due to more acidic surface Si–OH groups which benefit the generation of hydroxyl radicals. Furthermore, our investigation on the role of Pt on TiO2(P25), as an improved photocatalyst, demonstrated that suppression of charge recombination by oxygen adsorbed on the Pt particles, reacting with the separated electrons to superoxide radicals, acts as an important factor for the catalytic improvement. Combining both materials into the resulting Pt:SiO2:TiO2(P25) nanopowder exceeded the dye degradation performance of both the individual SiO2:TiO2(P25) (1.5 fold) and Pt:TiO2(P25) (4-fold) catalysts by 6-fold as compared to TiO2(P25). This approach thus shows that by understanding the individual materials’ behavior and using ALD as an appropriate deposition technique enabling control on the nano-scale, new materials can be designed and developed, further improving the photocatalytic activity. Our research demonstrates that ALD is an attractive technology to synthesize multicomponent catalysts in a precise and scalable way.


2016 ◽  
Vol 1 (14) ◽  
pp. 4265-4273 ◽  
Author(s):  
Bharati Debnath ◽  
Anupam Singha Roy ◽  
Sutanu Kapri ◽  
Sayan Bhattacharyya

Sign in / Sign up

Export Citation Format

Share Document