CRISPR-Cas9-mediated genome editing technology for abiotic stress tolerance in crop plant

2022 ◽  
pp. 331-354
Author(s):  
Akbar Hossain ◽  
Md. Muzahid E. Rahman ◽  
Sahin Ali ◽  
Tanjina Islam ◽  
M. Abu Syed ◽  
...  
Author(s):  
Ali Razzaq ◽  
Ghulam Mustafa ◽  
Muhammad Amjad Ali ◽  
Muhammad Sarwar Khan ◽  
Faiz Ahmad Joyia

Abstract This chapter discusses the applications of CRISPR-mediated genome editing to improve the abiotic stress tolerance (such as drought, heat, waterlogging and cold tolerance) of maize. CRISPR/Cas9 has great potential for maize genome manipulation at desired sites. By using CRISPR/Cas9-mediated genome editing, numerous genes can be targeted to produce elite maize cultivars that minimize the challenges of abiotic stresses. In the future, more precise and accurate variants of the CRISPR/Cas9 toolbox are expected to be used for maize yield improvement.


2020 ◽  
Author(s):  
Sinan Meriç ◽  
Alp Ayan ◽  
Çimen Atak

In last decades, plants were increasingly subjected to multiple environmental abiotic stress factors as never before due to their stationary nature. Excess urbanization following the intense industrial applications introduced combinations of abiotic stresses as heat, drought, salinity, heavy metals etc. to plants in various intensities. Technological advancements brought novel biotechnological tools to the abiotic stress tolerance area as an alternative to time and money consuming traditional crop breeding activities as well as they brought vast majority of the problem themselves. Discoveries of single gene (as osmoprotectant, detoxyfying enzyme, transporter protein genes etc.) and multi gene (biomolecule synthesis, heat shock protein, regulatory transcription factor and signal transduction genes etc.) targets through functional genomic approaches identified abiotic stress responsive genes through EST based cDNA micro and macro arrays. In nowadays, genetic engineering and genome editing tools are present to transfer genes among different species and modify these target genes in site specific, even single nuclotide specific manner. This present chapter will evaluate genomic engineering approaches and applications targeting these abiotic stress tolerance responsive mechanisms as well as future prospects of genome editing applications in this field.


2019 ◽  
Vol 71 (2) ◽  
pp. 470-479 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Syed Shan-e-Ali Zaidi ◽  
Yashika Gaba ◽  
Sneh Lata Singla-Pareek ◽  
Om Parkash Dhankher ◽  
...  

Recent developments in genome editing tools have raised hopes for societal acceptance of genome-edited/modified crops. We present a critical evaluation of these tools in tackling abiotic stress, a highly complex and multigenic trait.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianya Wang ◽  
Hongwei Xun ◽  
Wei Wang ◽  
Xiaoyang Ding ◽  
Hainan Tian ◽  
...  

Breeding of stress-tolerant plants is able to improve crop yield under stress conditions, whereas CRISPR/Cas9 genome editing has been shown to be an efficient way for molecular breeding to improve agronomic traits including stress tolerance in crops. However, genes can be targeted for genome editing to enhance crop abiotic stress tolerance remained largely unidentified. We have previously identified abscisic acid (ABA)-induced transcription repressors (AITRs) as a novel family of transcription factors that are involved in the regulation of ABA signaling, and we found that knockout of the entire family of AITR genes in Arabidopsis enhanced drought and salinity tolerance without fitness costs. Considering that AITRs are conserved in angiosperms, AITRs in crops may be targeted for genome editing to improve abiotic stress tolerance. We report here that mutation of GmAITR genes by CRISPR/Cas9 genome editing leads to enhanced salinity tolerance in soybean. By using quantitative RT-PCR analysis, we found that the expression levels of GmAITRs were increased in response to ABA and salt treatments. Transfection assays in soybean protoplasts show that GmAITRs are nucleus proteins, and have transcriptional repression activities. By using CRISPR/Cas9 to target the six GmAITRs simultaneously, we successfully generated Cas9-free gmaitr36 double and gmaitr23456 quintuple mutants. We found that ABA sensitivity in these mutants was increased. Consistent with this, ABA responses of some ABA signaling key regulator genes in the gmaitr mutants were altered. In both seed germination and seedling growth assays, the gmaitr mutants showed enhanced salt tolerance. Most importantly, enhanced salinity tolerance in the mutant plants was also observed in the field experiments. These results suggest that mutation of GmAITR genes by CRISPR/Cas9 is an efficient way to improve salinity tolerance in soybean.


2020 ◽  
Vol 44 (2) ◽  
pp. 121-127
Author(s):  
Tae Hyun

Climate change is affecting agriculture in a number of ways, such as changing water distribution, daily temperatures and salinity patterns. In this regard, plant breeding innovations and genetic engineering approaches to improve abiotic stress tolerance are necessary to avoid a decline in crop yields caused by climate change during the 21st century. In the last few years, genome editing using the CRISPR/Cas system has attracted attention as a powerful tool that can generate hereditary mutations. So far, only a few studies using the CRISPR/Cas system have been reported to improve abiotic stress tolerance, but they have clearly suggested its effective role for future applications in molecular breeding to improve abiotic stress tolerance. Accordingly, the CRISPR/Cas system application is introduced in this mini-review as a way to improve abiotic stress tolerance. Although editing efficiency and target discovery for plant CRISPR/Cas systems require further improvement, CRISPR/Cas systems will be the key approach to maintaining global food security during climate change.


Sign in / Sign up

Export Citation Format

Share Document