NUMERICAL SIMULATION OF WATER JET PENETRATION

Author(s):  
Gabi Luttwak
2016 ◽  
Vol 30 (02) ◽  
pp. 1550268 ◽  
Author(s):  
Jinwei Shi ◽  
Xingbai Luo ◽  
Jinming Li ◽  
Jianwei Jiang

To analyze the process of jet penetration in water medium quantitatively, the properties of jet penetration spaced target with water interlayer were studied through test and numerical simulation. Two theoretical models of jet penetration in water were proposed. The theoretical model 1 was established considering the impact of the shock wave, combined with the shock equation Rankine–Hugoniot and the virtual origin calculation method. The theoretical model 2 was obtained by fitting theoretical analysis and numerical simulation results. The effectiveness and universality of the two theoretical models were compared through the numerical simulation results. Both the models can reflect the relationship between the penetration velocity and the penetration distance in water well, and both the deviation and stability of theoretical model 1 are better than 2, the lower penetration velocity, and the larger deviation of the theoretical model 2. Therefore, the theoretical model 1 can reflect the properties of jet penetration in water effectively, and provide the reference of model simulation and theoretical research.


2008 ◽  
Vol 184 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Tingwen Li ◽  
Konstantin Pougatch ◽  
Martha Salcudean ◽  
Dana Grecov

2000 ◽  
Vol 2000 (0) ◽  
pp. 122
Author(s):  
Guoyi PENG ◽  
Shinji HAYAMA ◽  
Shigeo FUJIKAWA

2011 ◽  
Vol 462-463 ◽  
pp. 785-790
Author(s):  
Xiao Hong Li ◽  
Hu Si ◽  
Yan Ming Xie

The evolvement of rock fracture is a complicated and nonlinear dynamic problem. On the assumption that rock is homogeneous and isotropic, a numerical model was developed to simulate rock fracture under high pressure water jet based on continuum damage mechanics and nonlinear finite element method. The dynamic effect of rock was simulated by the dynamic contact method under high pressure water jet. The numerical simulation results showed that rock failure occurred within several milliseconds and the evolvement of it was for step under high pressure water jet and that the stress propagation in rock rapidly decayed with the distance from the jet centre. On the whole, the numerical results clearly exhibited the process of rock fracture and the extent of the water jet under high pressure water jet. It was important to the application of jet cutting rock theory and the development of water jet technology.


2011 ◽  
Vol 189-193 ◽  
pp. 2181-2184
Author(s):  
Heng Zhang ◽  
Xiao Ming Qian ◽  
Zhi Min Lu ◽  
Yuan Bai

The functions of hydroentangled nonwovens are determined by the degree of the fiber entanglement, which depend mainly on parameters of the water jet. According to the spun lacing technology, this paper set up the numerical model based on the simplified water jetting model, establishing the governing equations, and the blended two-phase flow as the multiphase flow model. This paper simulation the water needle after the water jetting from the water needle plate in the different pressure (100bar, 60bar, 45bar, 35bar).


2013 ◽  
Vol 345 ◽  
pp. 312-315 ◽  
Author(s):  
Bing Han ◽  
Yan Hua Wang ◽  
Chang Liang Xu

Water-jet cavitation peening is a new technology for surface modification of metallic materials. Compress residual stress layer is induced by impact wave pressure in the submerged cavitating jets processing. Based on ANSYS/LS-DYNA finite element analysis software, residual stress field in the SAE1070 spring steel material surface induced by cavitate-jet water peening process is simulated, the magnitude and variation rules of the residual stress along the layer depth under different conditions is obtained. In order to verify the correctness of the numerical simulation, the size and distribution of residual stress by the X-ray diffraction method. The results show that the numerical simulation and experimental results are well consistent.


Sign in / Sign up

Export Citation Format

Share Document