Kinetics of vanadium carbonitride precipitation in steel: A computer model

2005 ◽  
Vol 53 (12) ◽  
pp. 3359-3367 ◽  
Author(s):  
Philippe Maugis ◽  
Mohamed Gouné
1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (< 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.


2018 ◽  
Vol 82 (9) ◽  
pp. 1172-1179
Author(s):  
V. P. Filippova ◽  
E. N. Blinova ◽  
N. A. Shurygina ◽  
T. V. Rassadina

1994 ◽  
Vol 5 (5) ◽  
pp. 575-585 ◽  
Author(s):  
R Valkema ◽  
P J Van Haastert

In Dictyostelium discoideum extracellular cyclic AMP (cAMP), as shown by previous studies, induces a transient accumulation of intracellular cyclic guanosine-5'-monophosphate (cGMP), which peaks at 10 s and recovers basal levels at 30 s after stimulation, even with persistent cAMP stimulation. Additional investigations have shown that the cAMP-mediated cGMP response is built up from surface cAMP receptor-mediated activation of guanylyl cyclase and hydrolysis of cGMP by phosphodiesterase. The regulation of these activities was measured in detail on a seconds time-scale, demonstrating complex adaptation of the receptor, allosteric activation of cGMP-phosphodiesterase by cGMP, and potent inhibition of guanylyl cyclase by Ca2+. In this paper we present a computer model that combines all experimental data on the cGMP response. The model is used to investigate the contribution of each structural and regulatory component in the final cGMP response. Four models for the activation and adaptation of the receptor are compared with experimental observations. Only one model describes the magnitude and kinetics of the response accurately. The effect of Ca2+ on the cGMP response is simulated by changing the Ca2+ concentrations outside the cell (Ca2+ influx) and in stores (IP3-mediated release) and changing phospholipase C activity. The simulations show that Ca2+ mainly determines the magnitude of the cGMP accumulation; simulations are in good agreement with experiments on the effect of Ca2+ in electropermeabilized cells. Finally, when cGMP-phosphodiesterase activity is deleted from the model, the simulated cGMP response is elevated and prolonged, which is in close agreement with the experimental observations in mutant stmF that lacks this enzyme activity. We conclude that the computer model provides a good description of the observed response, suggesting that the main structural and regulatory components have been identified.


Author(s):  
J. F. DeNatale ◽  
D. G. Howitt

The electron irradiation of silicate glasses containing metal cations produces various types of phase separation and decomposition which includes oxygen bubble formation at intermediate temperatures figure I. The kinetics of bubble formation are too rapid to be accounted for by oxygen diffusion but the behavior is consistent with a cation diffusion mechanism if the amount of oxygen in the bubble is not significantly different from that in the same volume of silicate glass. The formation of oxygen bubbles is often accompanied by precipitation of crystalline phases and/or amorphous phase decomposition in the regions between the bubbles and the detection of differences in oxygen concentration between the bubble and matrix by electron energy loss spectroscopy cannot be discerned (figure 2) even when the bubble occupies the majority of the foil depth.The oxygen bubbles are stable, even in the thin foils, months after irradiation and if van der Waals behavior of the interior gas is assumed an oxygen pressure of about 4000 atmospheres must be sustained for a 100 bubble if the surface tension with the glass matrix is to balance against it at intermediate temperatures.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Sign in / Sign up

Export Citation Format

Share Document