Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition

2017 ◽  
Vol 131 ◽  
pp. 57-64 ◽  
Author(s):  
Yongpeng Tang ◽  
Wataru Goto ◽  
Shoichi Hirosawa ◽  
Zenji Horita ◽  
Seungwon Lee ◽  
...  
2012 ◽  
Vol 706-709 ◽  
pp. 504-509 ◽  
Author(s):  
Shao Kang Guan ◽  
Zhen Wei Ren ◽  
Jun Heng Gao ◽  
Yu Feng Sun ◽  
Shi Jie Zhu ◽  
...  

In this paper the in vitro degradation of ultrafine grained (UFG) Mg-Zn-Ca alloy produced by HPT was investigated by electrochemical measurements and immersion tests in SBF. It was found that UFG Mg alloy had better degradation properties and also higher microhardness value than as-cast Mg alloy. The corrosion current density of UFG Mg alloy decreased by about two orders of magnitude, compared with that of as-cast alloy. Through electrochemical impedance spectroscopy (EIS) test,UFG Mg alloy showed a higher charge transfer resistance value. In immersion test, UFG Mg alloy in SBF exhibited more uniform corrosion and lower degradation rate (0.0763 mm/yr) than as-cast alloy. The degradation properties were related with the microstructure evolution, namely the grain refinement and redistribution of second phase. Keywords: Mg-Zn-Ca alloy; High-pressure torsion (HPT); Degradation behavior; Simulated body fluid (SBF); Microhardness


2013 ◽  
Vol 114 (18) ◽  
pp. 183509 ◽  
Author(s):  
Matthias Wegner ◽  
Jörn Leuthold ◽  
Martin Peterlechner ◽  
Daria Setman ◽  
Michael Zehetbauer ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


Author(s):  
Ho Yong Um ◽  
Byung Ho Park ◽  
Dong-Hyun Ahn ◽  
Mohamed Ibrahim Abd El Aal ◽  
Jaechan Park ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 338-344
Author(s):  
Wan Ji Chen ◽  
Jie Xu ◽  
De Tong Liu ◽  
De Bin Shan ◽  
Bin Guo ◽  
...  

High-pressure torsion (HPT) was conducted under 6.0 GPa on commercial purity titanium up to 10 turns. An ultrafine-grained (UFG) pure Ti with an average grain size of ~96 nm was obtained. The thermal properties of these samples were studied by using differential scanning calorimeter (DSC) which allowed the quantitative determination of the evolution of stored energy, the recrystallization temperatures, the activation energy involved in the recrystallization of the material and the evolution of the recrystallized fraction with temperature. The results show that the stored energy increases, beyond which the stored energy seems to level off to a saturated value with increase of HPT up to 5 turns. An average activation energy of about 101 kJ/mol for the recrystallization of 5 turns samples was determined. Also, the thermal stability of the grains of the 5 turns samples with subsequent heat treatments were investigated by microstructural analysis and Vickers microhardness measurements. It is shown that the average grain size remains below 246 nm when the annealing temperature is below 500 °C, and the size of the grains increases significantly for samples at the annealing temperature of 600 °C.


2019 ◽  
Vol 60 (7) ◽  
pp. 1367-1376 ◽  
Author(s):  
Terukazu Nishizaki ◽  
Kaveh Edalati ◽  
Seungwon Lee ◽  
Zenji Horita ◽  
Tadahiro Akune ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document