Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition

2020 ◽  
Vol 113 ◽  
pp. 554-569 ◽  
Author(s):  
Jialong Fan ◽  
Bin Liu ◽  
Ying Long ◽  
Zhou Wang ◽  
Chunyi Tong ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3644
Author(s):  
Daeun You ◽  
Yisun Jeong ◽  
Sun Young Yoon ◽  
Sung A Kim ◽  
Eunji Lo ◽  
...  

Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.


2021 ◽  
Vol 17 (12) ◽  
pp. 2351-2363
Author(s):  
Zeliang Wu ◽  
Lin Zhu ◽  
Junhua Mai ◽  
Haifa Shen ◽  
Rong Xu

Due to its high heterogeneity and aggressiveness, cytotoxic chemotherapy is still a mainstay treatment for triple negative breast cancer. Unfortunately, the above mentioned has not significantly ameliorated TNBC patients and induces drug resistance. Exploring the mechanisms underlying the chemotherapy sensitivity of TNBC and developing novel sensitization strategies are promising approaches for improving the prognosis of patients. Rad51, a key regulator of DNA damage response pathway, repairs DNA damage caused by genotoxic agents through “homologous recombination repair.” Therefore, Rad51 inhibition may increase TNBC cell sensitivity to anticancer agents. Based on these findings, we first designed Rad51 siRNA to inhibit the Rad51 protein expression in vitro and evaluated the sensitivity of TNBC cells to doxorubicin. Subsequently, we constructed discoidal porous silicon microparticles (pSi) and encapsulated discoidal 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes/siRad51 (PS-DOPC/siRad51) to explore the synergistic antitumor effects of siRad51 and doxorubicin on two mouse models of TNBC in vivo. Our in vitro studies indicated that siRad51 enhanced the efficacy of DOX chemotherapy and significantly suppressed TNBC cell proliferation and metastasis. This effect was related to apoptosis induction and epithelial to mesenchymal transition (EMT) inhibition. siRad51 altered the expression of apoptosis- and EMT-related proteins. In orthotopic and lung metastasis xenograft models, the administration of PS-DOPC/siRad51 in combination with DOX significantly alleviated the primary tumor burden and lung metastasis, respectively. Our current studies present an efficient strategy to surmount chemotherapy resistance in TNBC through microvector delivery of siRad51.


2019 ◽  
Vol Volume 11 ◽  
pp. 249-259
Author(s):  
Yayun Liang ◽  
Cynthia Besch-Williford ◽  
Matthew T Cook ◽  
Anthony Belenchia ◽  
Rolf A Brekken ◽  
...  

2019 ◽  
Author(s):  
Valery Adorno-Cruz ◽  
Andrew D. Hoffmann ◽  
Xia Liu ◽  
Brian Wray ◽  
Ruth A. Keri ◽  
...  

AbstractAccumulating evidence demonstrates that cancer stemness is essential for both tumor development and progression, regulated by multi-layer factors at genetic, epigenetic and micro-environmental levels. However, how to target stemness-driven plasticity and eliminate metastasis remains one of the biggest challenges in the clinic. We aim to identify novel molecular mechanisms underlying stemness of triple negative breast cancer (TNBC) which frequently metastasizes to the visceral organs but lacks targeted therapies. Following our previous discovery of miR-206 as an epigenetic suppressor of tumorigenesis and metastasis, we now report that the integrin receptor CD49b-encodingITGA2is an oncogenic target of miR-206 in TNBC.ITGA2knockdown abolished cancer stemness (mammosphere formation, pluripotency marker expression, and FAK phosphorylation), inhibited cell cycling, compromised migration and invasion, and thereby decreasing lung metastasis of TNBC. RNA sequencing analyses of breast cancer cells revealed thatITGA2knockdown inhibits gene expression essential for both classical integrin-regulated pathways (cell cycle, wounding response, protein kinase, etc) and newly identified pathways such as lipid metabolism. Notably,ACLY-encoded ATP citrate lyase is one of the top targets in CD49b-regulated lipid metabolism andCCND1-encoded Cyclin D1 represents regulation of cell cycle and many other pathways. ACLY, known to catalyze the formation of cytosolic acetyl-CoA for fatty acid biosynthesis, is indispensable for cancer stemness. Overexpression ofCCND1rescues the phenotype ofITGA2knockdown-induced cell cycle arrest. High expression levels of theITGA2/ACLY/CCND1axis are correlated with an unfavorable relapse-free survival of patients with high grade breast cancer, in both basal-like and other subtypes. This study identifiesITGA2as a potential therapeutic target of TNBC stemness and metastasis.


2020 ◽  
Author(s):  
Weiwei Shi ◽  
Ding Ma ◽  
Yin Cao ◽  
Lili Hu ◽  
Shuwen Liu ◽  
...  

Abstract Background: Triple negative breast cancer (TNBC) features poor prognosis which partialy attributed to the high metastasis rate. However, there is no effective target for systemic TNBC therapy due to the absence of estrogen, progesterone, and human epidermal growth factor 2 receptors (ER, PR, HER-2) up to date. In the present study, we evaluated the role of sphingosine kinase 2 (SphK2) and its catalysate sphingosine-1-phosphate (S1P) in TNBC metastasis, and the antitumor activity of SphK2 specific inhibitor ABC294640 in TNBC metastasis. Methods: The function of SphK2 and S1P in migration of TNBC cells was evaluated by Transwell migration and wound healing assays. The molecular mechanisms of SphK2/S1P mediating TNBC metastasis were investigated using cell line establishment, western blot, histological examination and immunohistochemistry assays. The antitumor activity of ABC294640 was examined in TNBC lung metastasis model in vivo. Results: SphK2 regulated TNBC cells migration through the generation of S1P. Targeting SphK2 with ABC294640 inhibited TNBC lung metastasis in vivo . p21-activated kinase 1 (PAK1), p-Lin-11/Isl-1/Mec-3 kinase 1 (LIMK1) and Cofilin1 was the downstream signaling cascade of SphK2/S1P. Inhibition of PAK1 suppressed SphK2/S1P induced TNBC cells migration. Concusion: SphK2/S1P promotes TNBC metastasis through the activation of the PAK1/LIMK1/Cofilin1 signaling pathway. ABC294640 potently inhibits TNBC metastasis in vivo which could be developed as a novel agent for the clinical treatment of TNBC.


Sign in / Sign up

Export Citation Format

Share Document