Compressive deformation analysis of large area pellet-fed material extrusion 3D printed parts in relation to in situ thermal imaging

2020 ◽  
Vol 33 ◽  
pp. 101099
Author(s):  
Eduardo Meraz Trejo ◽  
Xavier Jimenez ◽  
Kazi Md Masum Billah ◽  
Jonathan Seppala ◽  
Ryan Wicker ◽  
...  
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mohsen Moazzami Gudarzi ◽  
Maryana Asaad ◽  
Boyang Mao ◽  
Gergo Pinter ◽  
Jianqiang Guo ◽  
...  

AbstractThe use of two-dimensional materials in bulk functional applications requires the ability to fabricate defect-free 2D sheets with large aspect ratios. Despite huge research efforts, current bulk exfoliation methods require a compromise between the quality of the final flakes and their lateral size, restricting the effectiveness of the product. In this work, we describe an intercalation-assisted exfoliation route, which allows the production of high-quality graphene, hexagonal boron nitride, and molybdenum disulfide 2D sheets with average aspect ratios 30 times larger than that obtained via conventional liquid-phase exfoliation. The combination of chlorosulfuric acid intercalation with in situ pyrene sulfonate functionalisation produces a suspension of thin large-area flakes, which are stable in various polar solvents. The described method is simple and requires no special laboratory conditions. We demonstrate that these suspensions can be used for fabrication of laminates and coatings with electrical properties suitable for a number of real-life applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinchen Du ◽  
Le Wu ◽  
Hongyu Yan ◽  
Zhuyan Jiang ◽  
Shilin Li ◽  
...  

AbstractDeveloping an anti-infective shape-memory hemostatic sponge able to guide in situ tissue regeneration for noncompressible hemorrhages in civilian and battlefield settings remains a challenge. Here we engineer hemostatic chitosan sponges with highly interconnective microchannels by combining 3D printed microfiber leaching, freeze-drying, and superficial active modification. We demonstrate that the microchannelled alkylated chitosan sponge (MACS) exhibits the capacity for water and blood absorption, as well as rapid shape recovery. We show that compared to clinically used gauze, gelatin sponge, CELOX™, and CELOX™-gauze, the MACS provides higher pro-coagulant and hemostatic capacities in lethally normal and heparinized rat and pig liver perforation wound models. We demonstrate its anti-infective activity against S. aureus and E. coli and its promotion of liver parenchymal cell infiltration, vascularization, and tissue integration in a rat liver defect model. Overall, the MACS demonstrates promising clinical translational potential in treating lethal noncompressible hemorrhage and facilitating wound healing.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5032
Author(s):  
Alec Ikei ◽  
James Wissman ◽  
Kaushik Sampath ◽  
Gregory Yesner ◽  
Syed N. Qadri

In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d33 performance of up to 18 pC N−1, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process.


Author(s):  
Yuan Gao ◽  
Souha Toukabri ◽  
Ye Yu ◽  
Andreas Richter ◽  
Robert Kirchner
Keyword(s):  

2017 ◽  
Vol 2 (8) ◽  
pp. 1700051 ◽  
Author(s):  
Muhammad Fahad Farooqui ◽  
Muhammad Akram Karimi ◽  
Khaled Nabil Salama ◽  
Atif Shamim

2011 ◽  
Vol 679-680 ◽  
pp. 777-780 ◽  
Author(s):  
Shoji Ushio ◽  
Ayumu Adachi ◽  
Kazuhiro Matsuda ◽  
Noboru Ohtani ◽  
Tadaaki Kaneko

As a new graphene functionality applicable to post-implantation high temperature annealing of SiC, a method of in situ formation and removal of large area epitaxial few-layer graphene on 4H-SiC(0001) Si-face is proposed. It is demonstrated that the homogeneous graphene layer formed by Si sublimation can be preserved without the decomposition of the underlying SiC substrate even in the excess of 2000 oC in ultrahigh vacuum. It is due to the existence of the stable (6√3×6√3) buffer layer at the interface. To ensure this cap function, the homogeneity of the interface must be guaranteed. In order to do that, precise control of the initial SiC surface flatness is required. Si-vapor etching is a simple and versatile SiC surface pre/post- treatment method, where thermally decomposed SiC surface is compensated by a Si-vapor flux from Si solid source in the same semi-closed TaC container. While this Si-vapor etching allows precise control of SiC etch depth and surface step-terrace structures, it also provides a “decap” function to remove of the graphene layer. The surface properties after the each process were characterized by AFM and Raman spectroscopy.


2017 ◽  
Vol 17 ◽  
pp. 135-142 ◽  
Author(s):  
Oliver Holzmond ◽  
Xiaodong Li

Sign in / Sign up

Export Citation Format

Share Document