scholarly journals Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder

2020 ◽  
Vol 59 (5) ◽  
pp. 3297-3307 ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
So. Roghani ◽  
A.R. Mogharrebi ◽  
A. Asadi ◽  
M. Waqas ◽  
...  
2021 ◽  
Vol 10 (3) ◽  
pp. 327-338
Author(s):  
K. Kumaraswamy Naidu ◽  
D. Harish Babu ◽  
P. V. Satya Narayana

The present investigation focuses on the influence of motile gyrotactic microorganisms and thermal heat flux on three-dimensional convective flow of a Casson nanoliquid over an elongated surface. The flow equations are modelled by using Tiwari-Das nanofluid model. Sodium alginate (SA) is considered as the base fluid together with Ferromagnetic oxide (Fe3O4) nanoparticles. The governing flow equations are changed into a system of ODEs with the aid of similarity variables and are then addressed computationally. Influence of various pertinent parameters on different physical quantities is examined graphically. The outcomes of present investigation is validated through comparison study and is found to be in good arrangement. It is noticed that the coefficient of heat transfer rises with growing radiation and Biot numbers. Also the mass transfer coefficient surges for higher values of Schmidt number and generative chemical reaction parameter.


Author(s):  
Samaira Aziz ◽  
Iftikhar Ahmad ◽  
Sami Ullah Khan ◽  
Nasir Ali

The main focus of this research is to explore the consequences of motile gyrotactic microorganisms for unsteady Williamson nanofluid induced by bidirectional periodically accelerated surface. The combined features of magnetic and buoyancy forces with association of nanoparticles and swimming microorganisms developed the nanofluid bioconvection. Thermal radiation and heat generation aspects are considered to analyze the heat transportation phenomenon. The consequences of activation energy and chemical reaction are further explored for physical relevance. Appropriate transformations have been employed to transmute the formulated nonlinear equations into dimensionless form, and then analytically elucidated by homotopic technique. The effect of diverse dominant parameters on velocities, concentration, temperature, motile microorganisms as well as skin friction coefficients are deliberated through various graphs while the deviation in local Sherwood, Nusselt and motile density numbers have been deliberated by numerical data in tabular form. It is noticed that both velocity components periodically drop for augmentation in Williamson parameter. Current investigation accentuated that higher reaction rate leads to decay in concentration distribution, but impact of activation energy parameter is rather conflicting. Furthermore, the profile of motile microorganism leads to be intensified for higher magnetic parameter, while opposite trend is perceived for bioconvected Peclet and Lewis numbers.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Tanveer Sajid ◽  
Muhammad Sagheer ◽  
Shafqat Hussain ◽  
Faisal Shahzad

AbstractThe double-diffusive tangent hyperbolic nanofluid containing motile gyrotactic microorganisms and magnetohydrodynamics past a stretching sheet is examined. By adopting the scaling group of transformation, the governing equations of motion are transformed into a system of nonlinear ordinary differential equations. The Keller box scheme, a finite difference method, has been employed for the solution of the nonlinear ordinary differential equations. The behaviour of the working fluid against various parameters of physical nature has been analyzed through graphs and tables. The behaviour of different physical quantities of interest such as heat transfer rate, density of the motile gyrotactic microorganisms and mass transfer rate is also discussed in the form of tables and graphs. It is found that the modified Dufour parameter has an increasing effect on the temperature profile. The solute profile is observed to decay as a result of an augmentation in the nanofluid Lewis number.


1999 ◽  
Vol 7 ◽  
pp. 408-417 ◽  
Author(s):  
J. H. Strickland ◽  
L. A. Gritzo ◽  
R. S. Baty ◽  
G. F. Homicz ◽  
S. P. Burns

Author(s):  
Mohammad Mehdi Tavakol ◽  
Mohammad Eslami

Fluid flow around single or multiple bluff bodies mounted on a surface has great significance in science and engineering. Understanding the characteristics of different vortices formed around wall-mounted bodies is quite necessary for different applications. Although the case of a single surface mounted cube has been studied extensively, only little attention has been paid to the flow around two or more rectangular blocks in array. Therefore, a CFD code is developed to calculate three dimensional steady state laminar fluid flow around two cuboids of arbitrary size and configuration mounted on a surface in free stream conditions. The employed numerical scheme is finite volume and SIMPLE algorithm is used to treat pressure and velocity coupling. Results are presented for two rectangular blocks of the different size mounted on a surface in various inline arrangements. Streamlines are plotted for blocks of different size ratio. Velocity and pressure distributions are also plotted in the wake region behind the obstacles. It is shown that how the behavior of flow field and vortical structures depend on the respective size and location of the larger block in comparison with the case of two inline wall mounted cubes of the same size.


2006 ◽  
Vol 128 (4) ◽  
pp. 745-752 ◽  
Author(s):  
C. J. Hooke ◽  
K. Y. Li

Using modern EHL programs it is relatively simple to determine the pressures and clearances in rough EHL contacts. The pressures may then be used to calculate the subsurface stresses in the two contacting components. However, the results depend on the assumptions made about the fluid’s rheology. While it is possible to measure the clearances using interferometric techniques, measurement of either the pressures or stresses is extremely difficult. However it is these, rather than the clearances, that determine the life of the contact. In previous papers the authors have described how the inverse method may be used to validate the stress predictions for contacts with transverse roughness. This type of contact has fluid flow in only one plane and it remained necessary to check the results for more general rough surfaces where the flow is three-dimensional. Accordingly, the inverse method is extended, in this paper, to a situation where out-of-plane flow is significant. The paper describes the approach and presents some preliminary results for rolling contacts.


Author(s):  
Najib Hdhiri ◽  
Brahim Ben Beya

Purpose The purpose of this study is to investigate the effects of heat generation or absorption on heat transfer and fluid flow within two- and three-dimensional enclosure for homogeneous medium filled with different metal liquid. Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities, Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321). The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference. This was not the case in the convective regime (Gr = 105) where the effect of the third direction becomes important, where a 2D-3D difference was seen with about 37 per cent. Also, in most cases, the authors find that the heat absorption phenomena have the opposite effect with respect to the heat generation. Design/methodology/approach Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities. Findings Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321). Originality/value The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference.


Sign in / Sign up

Export Citation Format

Share Document