Soil moisture based deficit irrigation management for sugarcane (Saccharum officinarum L.) in semiarid environment

2021 ◽  
Vol 245 ◽  
pp. 106549
Author(s):  
S.K. Dingre ◽  
S.D. Gorantiwar
2021 ◽  
Vol 248 ◽  
pp. 106767
Author(s):  
Huihui Zhang ◽  
Liwang Ma ◽  
Kyle R. Douglas-Mankin ◽  
Ming Han ◽  
Thomas J. Trout

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 756
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Ahmed S. M. El-Kholy ◽  
Mohamed M. A. Ali ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water shortage is a major environmental stress that destructively impacts maize production, particularly in arid regions. Therefore, improving irrigation management and increasing productivity per unit of water applied are needed, especially under the rising temperature and precipitation fluctuations induced by climate change. Laboratory and field trials were carried out in the present study, which were aimed at assessing the possibility of promoting maize germination, growth, grain yield and crop water productivity (CWP) using seed priming under different irrigation regimes. Two seed priming treatments, i.e., hydro-priming and hardening versus unprimed seeds, were applied under four irrigation regimes, i.e., 120, 100, 80 and 60% of estimated crop evapotranspiration (ETc). The obtained results indicated that increasing irrigation water from 100% up to 120% ETc did not significantly increase grain yield or contributing traits, while it decreased CWP. Deficit irrigation of 80 and 60% ETc gradually decreased grain yield and all attributed traits. Seed priming significantly ameliorated seedlings’ vigor as indicated by earlier germination, higher germination percentage, longer roots and shoots, and heavier fresh and dry weight than unprimed seeds with the superiority of hardening treatment. Additionally, under field conditions, seed priming significantly increased grain yield, yield contributing traits and CWP compared with unprimed treatment. Interestingly, the results reflect the role of seed priming, particularly hardening, in mitigating negative impacts of drought stress and enhancing maize growth, grain yield and attributed traits as well as CWP under deficit irrigation conditions. This was demonstrated by a significant increase in grain yield and CWP under moderate drought and severe drought conditions compared with unprimed treatment. These results highlight that efficient irrigation management and seed priming can increase maize yield and water productivity in arid environments.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 555 ◽  
Author(s):  
Paola Sánchez-Bravo ◽  
Jacinta Collado-González ◽  
Mireia Corell ◽  
Luis Noguera-Artiaga ◽  
Alejandro Galindo ◽  
...  

Water, especially in arid and semiarid regions, is increasingly a disputed commodity among different productive sectors; the pressure for a more sustainable use of water in agriculture will grow. The main strategy to cope with water scarcity is the use of improved, innovative, and precise deficit irrigation management practices which are able to minimize the impact on fruit yield and quality. The aim of this paper was to develop a certification index or hydroSOS quality index for extra virgin olive oil and processed table olives. The hydrosSOS fruits and vegetables are those cultivated under regulated deficit irrigation (RDI). Different indicators in three quality areas ((i) fatty acids, (ii) phenolic compounds, and (iii) sensory attributes) were identified as showing characteristic or typical responses under RDI conditions. Marks or scores were assigned to each one of these indicators to calculate the proposed index. It can be concluded that an extra virgin olive oil (EVOO) or processed table olives are hydroSOStainable foods, if they meet 2 conditions: (i) fulfill the conditions established in the hydroSOS “irrigation” index, and (ii) fulfill the requirements of the hydroSOS “quality” index. HydroSOS quality index will be specific to each crop and variety and will depend on functional and sensory factors.


2013 ◽  
Vol 50 (3) ◽  
pp. 407-425 ◽  
Author(s):  
T. SAMPATHKUMAR ◽  
B. J. PANDIAN ◽  
P. JEYAKUMAR ◽  
P. MANICKASUNDARAM

SUMMARYWater stress induces some physiological changes in plants and has cumulative effects on crop growth and yield. Field experiments were conducted to study the effect of deficit irrigation (DI) on yield and some physiological parameters in cotton and maize in a sequential cropping system. Creation of soil moisture gradient is indispensable to explore the beneficial effects of partial root zone drying (PRD) irrigation and it could be possible only through alternate deficit irrigation (ADI) practice in paired row system of drip layout that is commonly practiced in India. In the present study, PRD and DI concepts (creation of soil moisture gradient) were implemented through ADI at two levels of irrigation using drip system. Maize was sown after cotton under no till condition without disturbing the raised bed and drip layout. Relative leaf water content (RLWC) and chlorophyll stability index (CSI) of cotton and maize were reduced under water stress. A higher level of leaf proline content was observed under severe water-stressed treatments in cotton and maize. RLWC and CSI were highest and leaf proline content was lowest in mild water deficit (ADI at 100% crop evapotranspiration once in three days) irrigation in cotton and maize. The same treatments registered higher values for crop yields, net income and benefit cost ratio for both the crops.


2021 ◽  
Author(s):  
Maria Paula Mendes ◽  
Ana Paula Falcão ◽  
Magda Matias ◽  
Rui Gomes

<p>Vineyards are crops whose production has a major economic impact in the Portuguese economy (~750 million euros) being exported worldwide. As the climate models project a larger variability in precipitation regime, the water requirements of vineyards can change and drip irrigation can be responsible for salt accumulation in the root zone, especially when late autumn and winter precipitation is not enough to leach salts from the soil upper horizons, turning the soil unsuitable for grape production.</p><p>The aim of this work is to present a methodology to map surface soil moisture content (SMC) in a vineyard, (40 hectares) based on the application of two classification algorithms to satellite imagery (Sentinel 1 and Sentinel 2). Two vineyard plots were considered and three field campaigns (December 2017, January 2018 and May 2018) were conducted to measure soil moisture contents (SMC). A geostatistical method was used to estimate the SM class probabilities according to a threshold value, enlarging the training set (i.e., SMC data of the two plots) for the classification algorithms. Sentinel-1 and Sentinel-2 images and terrain attributes fed the classification algorithms. Both methods, Random Forest and Logistic Regression, classified the highest SMC areas, with probabilities above 14%, located close to a stream at the lower altitudes.</p><p>RF performed very well in classifying the topsoil zones with lower SMC during the autumn-winter period (F-measure=0.82).</p><p>This delineation allows the prevention of the occurrence of areas affected by salinization, indicating which areas will need irrigation management strategies to control the salinity, especially under climate change, and the expected increase in droughts.</p>


2016 ◽  
Vol 10 (1s) ◽  
pp. 69 ◽  
Author(s):  
Marcella M. Giuliani ◽  
Giuseppe Gatta ◽  
Eugenio Nardella ◽  
Emanuele Tarantino

Processing tomato grown in Mediterranean region required high irrigation volume throughout growing season. A two-year study was carried out in order to investigate the effects of deficit irrigation (DI) and regulated deficit irrigation (RDI) on processing tomato cultivated under sub-arid conditions. A comparison between the irrigation management linked to common practice adopted by farmer and the irrigation management based on crop evapotranspiration (ET<sub>c</sub>) demand was also done. The tomato cv. <em>Genius</em> F1 was cultivated under five water regimes: minimal irrigation (I<sub>0</sub>), as irrigation only at transplanting and during fertilising; DI, to restore 60% ET<sub>c</sub>; RDI, to restore 60%-80%- 60% ET<sub>c</sub> across the three main tomato phenological stages; full irrigation (FI), to restore 100% ET<sub>c</sub>; and farmer irrigation (FaI), as irrigation following the subjective farmer method. Compared to FI, under the FaI regime, the seasonal irrigation volume was 31% and 26% higher in the 2009 and 2010, respectively, with not significant yield increase between the two water regimes. Among the irrigation regimes, only the RDI showed similar yield values over the two years, although 2010 was climatically less favourable. For the water use efficiency related to the marketable yield (WUE<sub>y</sub>), among the irrigation regimes, RDI showed the higher value together with FI. Finally, the K<sub>y</sub> was 0.91, which indicates moderate water stress tolerance for processing tomato cultivated in Mediterranean regions. In conclusion, the data obtained in the present study demonstrate that in Southern Italy the irrigation planning followed by the farmer does not follow the principles of sustainable irrigation. Moreover, with the adoption of the RDI strategy, it is possible to save about 27% of water maintaining high WUE<sub>y</sub> value with an increase of fruit quality. The adoption of this regime could be suggested in processing tomato cultivated under Mediterranean climate saving water in both the vegetative and ripening periods.


2021 ◽  
Author(s):  
Marco Mancini ◽  
Chiara Corbari ◽  
Imen Ben Charfi ◽  
Ahmad Al Bitar ◽  
Drazen Skokovic ◽  
...  

&lt;p&gt;The conflicting use of water is becoming more and more evident, also in regions that are traditionally rich in water. With the world&amp;#8217;s population projected to increase to 8.5 billion by 2030, the simultaneous growth in income will imply a substantial increase in demand for both water and food. Climate change impacts will further stress the water availability enhancing also its conflictual use. The agricultural sector is the biggest and least efficient water user, accounts for around 24% of total water use in Europe, peaking at 80% in the southern regions.&lt;/p&gt;&lt;p&gt;This paper shows the implementation of a system for real-time operative irrigation water management at high spatial and temporal able to monitor the crop water needs reducing the irrigation losses and increasing the water use efficiency, according to different agronomic practices supporting different level of water users from irrigation consortia to single farmers. The system couples together satellite (land surface temperature LST and vegetation information) and ground data, with pixel wise hydrological crop soil water energy balance model. In particular, the SAFY (Simple Algorithm for Yield) crop model has been coupled with the pixel wise energy water balance FEST-EWB model, which assimilate satellite LST for its soil parameters calibration. The essence of this coupled modelling is that the SAFY provides the leaf area index (LAI) evolution in time used by the FEST-EWB for evapotranspiration computation while FEST-EWB model provides soil moisture (SM) to SAFY model for computing crop grow for assigned water content.&lt;/p&gt;&lt;p&gt;The FEST-EWB-SAFY has been firstly calibrated in specific fields of Chiese (maize crop) and Capitanata (tomatoes) where ground measurements of evapotranspiration, soil moisture and crop yields are available, as well as LAI from Sentinel2-Landsat 7 and 8 data. The FEST-EWB-SAFY model has then been validated also on several fields of the RICA farms database in the two Italian consortia, where the economic data are available plus the crop yield. Finally, the modelled maps of LAI have then been validated over the whole Consortium area (Chiese and Capitanata) against satellite data of LAI from Landsat 7 and 8, and Sentinel-2.&lt;/p&gt;&lt;p&gt;Optimized irrigation volumes are assessed based on a soil moisture thresholds criterion, allowing to reduce the passages over the field capacity threshold reducing the percolation flux with a saving of irrigation volume without affecting evapotranspiration and so that the crop production. The implemented strategy has shown a significative irrigation water saving, also in this area where a traditional careful use of water is assessed.&lt;/p&gt;&lt;p&gt;The activity is part of the European project RET-SIF (www.retsif.polimi.it).&lt;/p&gt;


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 190 ◽  
Author(s):  
Nidia G. S. Campos ◽  
Atslands R. Rocha ◽  
Rubens Gondim ◽  
Ticiana L. Coelho da Silva ◽  
Danielo G. Gomes

Irrigation is one of the most water-intensive agricultural activities in the world, which has been increasing over time. Choosing an optimal irrigation management plan depends on having available data in the monitoring field. A smart agriculture system gathers data from several sources; however, the data are not guaranteed to be free of discrepant values (i.e., outliers), which can damage the precision of irrigation management. Furthermore, data from different sources must fit into the same temporal window required for irrigation management and the data preprocessing must be dynamic and automatic to benefit users of the irrigation management plan. In this paper, we propose the Smart&Green framework to offer services for smart irrigation, such as data monitoring, preprocessing, fusion, synchronization, storage, and irrigation management enriched by the prediction of soil moisture. Outlier removal techniques allow for more precise irrigation management. For fields without soil moisture sensors, the prediction model estimates the matric potential using weather, crop, and irrigation information. We apply the predicted matric potential approach to the Van Genutchen model to determine the moisture used in an irrigation management scheme. We can save, on average, between 56.4% and 90% of the irrigation water needed by applying the Zscore, MZscore and Chauvenet outlier removal techniques to the predicted data.


2020 ◽  
Vol 40 (6) ◽  
pp. 762-773 ◽  
Author(s):  
Jaime Puértolas ◽  
Marta Pardos ◽  
Carlos de Ollas ◽  
Alfonso Albacete ◽  
Ian C Dodd

Abstract Soil moisture heterogeneity in the root zone is common both during the establishment of tree seedlings and in experiments aiming to impose semi-constant soil moisture deficits, but its effects on regulating plant water use compared with homogenous soil drying are not well known in trees. Pronounced vertical soil moisture heterogeneity was imposed on black poplar (Populus nigra L.) grown in soil columns by altering irrigation frequency, to test whether plant water use, hydraulic responses, root phytohormone concentrations and root xylem sap chemical composition differed between wet (well-watered, WW), and homogeneously (infrequent deficit irrigation, IDI) and heterogeneously dry soil (frequent deficit irrigation, FDI). At the same bulk soil water content, FDI plants had greater water use than IDI plants, probably because root abscisic acid (ABA) concentration was low in the upper wetter layer of FDI plants, which maintained root xylem sap ABA concentration at basal levels in contrast with IDI. Soil drying did not increase root xylem concentration of any other hormone. Nevertheless, plant-to-plant variation in xylem jasmonic acid (JA) concentration was negatively related to leaf stomatal conductance within WW and FDI plants. However, feeding detached leaves with high (1200 nM) JA concentrations via the transpiration stream decreased transpiration only marginally. Xylem pH and sulphate concentration decreased in FDI plants compared with well-watered plants. Frequent deficit irrigation increased root accumulation of the cytokinin trans-zeatin (tZ), especially in the dry lower layer, and of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), in the wet upper soil layer. Root hormone accumulation might explain the maintenance of high root hydraulic conductance and water use in FDI plants (similar to well-watered plants) compared with IDI plants. In irrigated tree crops, growers could vary irrigation scheduling to control water use by altering the hormone balance.


Sign in / Sign up

Export Citation Format

Share Document