P28-11 The CRISPR-Cas13a gene-editing system underlies a potential therapeutic strategy for EML4-ALK-positive lung cancer cells

2021 ◽  
Vol 32 ◽  
pp. S347
Author(s):  
Saifullah Saifullah ◽  
Matomo Sakari ◽  
Takeshi Suzuki ◽  
Seiji Yano ◽  
Toshifumi Tsukahara
2021 ◽  
Vol 22 (11) ◽  
pp. 5820
Author(s):  
Cheng Zeng ◽  
Tingting Zou ◽  
Junyan Qu ◽  
Xu Chen ◽  
Suping Zhang ◽  
...  

Mitophagy plays a pro-survival or pro-death role that is cellular-context- and stress-condition-dependent. In this study, we revealed that cyclovirobuxine D (CVB-D), a natural compound derived from Buxus microphylla, was able to provoke mitophagy in lung cancer cells. CVB-D-induced mitophagy potentiates apoptosis by promoting mitochondrial dysfunction. Mechanistically, CVB-D initiates mitophagy by enhancing the expression of the mitophagy receptor BNIP3 and strengthening its interaction with LC3 to provoke mitophagy. Our results further showed that p65, a transcriptional suppressor of BNIP3, is downregulated upon CVB-D treatment. The ectopic expression of p65 inhibits BNIP3 expression, while its knockdown significantly abolishes its transcriptional repression on BNIP3 upon CVB-D treatment. Importantly, nude mice bearing subcutaneous xenograft tumors presented retarded growth upon CVB-D treatment. Overall, we demonstrated that CVB-D treatment can provoke mitophagy and further revealed that the p65/BNIP3/LC3 axis is one potential mechanism involved in CVB-D-induced mitophagy in lung cancer cells, thus providing an effective antitumor therapeutic strategy for the treatment of lung cancer patients


2012 ◽  
Vol 106 (4) ◽  
pp. 763-767 ◽  
Author(s):  
J Tanizaki ◽  
I Okamoto ◽  
K Takezawa ◽  
K Sakai ◽  
K Azuma ◽  
...  

FEBS Open Bio ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 472-476 ◽  
Author(s):  
Yi Zhao ◽  
Yi Yang ◽  
Yunhua Xu ◽  
Shun Lu ◽  
Hong Jian

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna M. Schläfli ◽  
Igor Tokarchuk ◽  
Sarah Parejo ◽  
Susanne Jutzi ◽  
Sabina Berezowska ◽  
...  

AbstractALK inhibitors effectively target EML4-ALK positive non-small cell lung cancer, but their effects are hampered by treatment resistance. In the present study, we asked whether ALK inhibition affects autophagy, and whether this may influence treatment response. Whereas the impact of targeted therapies on autophagic activity previously have been assessed by surrogate marker proteins such as LC3B, we here thoroughly examined effects on functional autophagic activity, i.e. on the sequestration and degradation of autophagic cargo, in addition to autophagic markers. Interestingly, the ALK inhibitor Ceritinib decreased mTOR activity and increased GFP-WIPI1 dot formation in H3122 and H2228 EML4-ALK+ lung cancer cells, suggesting autophagy activation. Moreover, an mCherry-EGFP-LC3B based assay indicated elevated LC3B carrier flux upon ALK inhibition. In accordance, autophagic cargo sequestration and long-lived protein degradation significantly increased upon ALK inhibition. Intriguingly, autophagic cargo flux was dependent on VPS34 and ULK1, but not LC3B. Co-treating H3122 cells with Ceritinib and a VPS34 inhibitor or Bafilomycin A1 resulted in reduced cell numbers. Moreover, VPS34 inhibition reduced clonogenic recovery of Ceritinib-treated cells. In summary, our results indicate that ALK inhibition triggers LC3B-independent macroautophagic flux in EML4-ALK+ cells to support cancer cell survival and clonogenic growth.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Lingyan Wang ◽  
Jiayun Hou ◽  
Minghuan Zheng ◽  
Lin Shi

Actinidia Chinensis Planch roots (acRoots) are used to treat many cancers, although the anti-tumor mechanism by which acRoots inhibit cancer cell growth remains unclear. The present study aims at investigating inhibitory effects of acRoots on human lung cancer cells and potential mechanisms. Our data demonstrate that the inhibitory effects of acRoots on lung cancer cells depend on genetic backgrounds and phenotypes of cells. We furthermore found the expression of metabolism-associated gene profiles varied between acRoots-hypersensitive (H460) or hyposensitive lung cancer cells (H1299) after screening lung cancer cells with different genetic backgrounds. We selected retinoic acid receptor beta (RARB) as the core target within metabolism-associated core gene networks and evaluated RARB changes and roles in cells treated with acRoots at different concentrations and timeframes. Hypersensitive cancer cells with the deletion of RARB expression did not response to the treatment with acRoots, while RARB deletion did not change effects of acRoots on hyposensitive cells. Thus, it seems that RARB as the core target within metabolism-associated networks plays important roles in the regulation of lung cancer cell sensitivity to acRoots.


Sign in / Sign up

Export Citation Format

Share Document