Managing the reactivity excess of the gas turbine-modular helium reactor by burnable poison and control rods

2006 ◽  
Vol 33 (1) ◽  
pp. 84-98 ◽  
Author(s):  
Alberto Talamo
2021 ◽  
Vol 247 ◽  
pp. 10023
Author(s):  
K. Lisa Reed ◽  
Farzad Rahnema

The Small, Modular Advanced High Temperature Reactor (SmAHTR) is a preconceptual design for a fluoride salt-cooled small modular reactor (SMR) [1]. In this paper, a stylized 2D benchmark problem set has been created based on SmAHTR. Certain gaps and considerations in burnable poison and control rod content were unspecified/undetermined in the preconceptual design, but those gaps were filled for the stylized problem set. With those features, this problem set could then be used for benchmarking neutron transport methods as well as its low order methods in 2D single assembly and full core configurations. For this benchmark set, continuous energy Monte Carlo calculations were performed. Those calculations provided keff values of 0.9459 (± 11 pcm) and 1.1436 (± 12 pcm) in the full core configuration with all the control rods fully inserted and withdrawn, respectively. The single assembly calculations yielded an eigenvalue, kinf, of 0.9987 (± 15 pcm) and 1.2117 (± 15 pcm) with all of the control rods either inserted or removed, respectively. In the full core configuration, the worth of all the control rods and burnable poison particles were determined to be 197.6 (± 0.16) mk and 311.6 (± 0.23) mk, respectively. The corresponding results in the single assembly configurations are 213 (± 0.21) mk and 337.4 (± 0.20) mk, respectively. A near-critical configuration was also determined for the reactor by inserting control rods in some assemblies, thus providing a case with a keff value of 0.9909 (± 12 pcm).


Author(s):  
Jeff W. Bird ◽  
Howard M. Schwartz

This review surveys knowledge needed to develop an improved method of modelling the dynamics of gas turbine performance for fault diagnosis applications. Aerothermodynamic and control models of gas turbine processes are examined as complementary to models derived directly from test data. Extensive, often proprietary data are required for physical models of components, while system identification (SI) methods need data from specially-designed tests. Current methods are limited in: tuning models to test data, non-linear effects, component descriptions in SI models, robustness to noise, and inclusion of control systems and actuators. Conclusions are drawn that SI models could be formulated, with parameters which describe explicitly the functions of key engine components, to offer improved diagnostic capabilities.


Author(s):  
Walter Brockett ◽  
Angelo Koschier

The overall design of and Advanced Integrated Propulsion System (AIPS), powered by an LV100 gas turbine engine, is presented along with major test accomplishments. AIPS was a demonstrator program that included design, fabrication, and test of an advanced rear drive powerpack for application in a future heavy armored vehicle (54.4 tonnes gross weight). The AIPS design achieved significant improvements in volume, performance, fuel consumption, reliability/durability, weight and signature reduction. Major components of AIPS included the recuperated LV100 turbine engine, a hydrokinetic transmission, final drives, self-cleaning air filtration (SCAF), cooling system, signature reduction systems, electrical and hydraulic components, and control systems with diagnostics/prognostics and maintainability features.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Muhammad Qasim Awan ◽  
Liangzhi Cao ◽  
Hongchun Wu ◽  
Chuanqi Zhao

Use of FCM fuel in light water reactors is an attractive option for existing and future generations of these reactors to make them accident tolerant in nature. This work focuses on the neutronic study of the use of burnable material in various configurations to control the excess reactivity and to keep the moderator temperature coefficient of reactivity (MTC) feedback negative for entire cycle length. Erbia and gadolinia, two conventional materials are used in three different configurations including quadruple isotropic (QUADRISO), bi-isotropic (BISO), and Matrix Mix forms. The results obtained from the implicit random treatment of the double heterogeneity of tri-structural isotropic (TRISO), QUADRISO, and BISO particles show that the erbia is the best material to be used in QUADRISO and Matrix Mix configurations with lowest reactivity swing for the life cycle and residual poison well below 0.5%. Gadolinia is usable in FCM environment only in the BISO form where enhanced self-shielding controls the depletion performance of the material. The gadolinia has almost zero residual poison at end of cycle (EOC); however, it has relatively large reactivity swing, which will need more micromanagement of the control rods during the plant operations. At the beginning of cycle (BOC), erbia-loaded assemblies have shown an increase in negative value of MTC compared with reference due to presence of resonance peak in erbium near 1 eV. The finally recommended material-configuration combinations have shown the excess reactivity containment in desired manner with good depletion performance and negative feedback of the MTC for life cycle.


1985 ◽  
Vol 22 (01) ◽  
pp. 1-27
Author(s):  
Ralph J. Della Rocca ◽  
John D. Stehn

The need for a gas turbine training facility became apparent with the introduction into the U.S. Navy fleet of the first ships of the FFG7 Frigate and DD963 Destroyer Classes with gas turbine propulsion plants. This facility, constructed at the Great Lakes Naval Training Center, provides "hands-on" training for maintenance and operation of marine gas turbines and associated propulsion plant components and controls and their piping and electrical systems. The Navy intends to train at this facility approximately 1000 personnel per year in the use of their latest and newest propulsion plants. The design of the facility reproduces as closely as possible the existing machinery and control spaces of the two different classes of ships and integrates them into a single main building with the school and the mechanical equipment wings. This paper presents an overview of the need for well-trained, qualified naval personnel to man the expanding fleet of marine gas turbine propulsion systems, existing training facilities and the various stages in the development of the FFG7/DD963 Gas Turbine Maintenance and Operational Training Facility. In regard to the facility, the paper discusses the planning and managing of the project; development of the designs for the building and propulsion plants; construction of the building facilities and FFG7 plant; the fabrication, transportation and erection of the FFG7 within the building; and the testing and operation of the FFG7 plant since light-off. Major emphasis is given to the FFG7 plant since the DD963 plant is being reconsidered in conjunction with the CG47 upgrading and is awaiting a decision to proceed.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Author(s):  
Guangwen Bi ◽  
Chuntao Tang ◽  
Bo Yang

Elimination of soluble boron will be a challenge to reactor operation for PWR. This paper is to promote a control strategy of soluble boron-free operation for a small PWR, through selection of burnable poison (BP), BP loading and control rod loading, based on the reactivity balance and manage requirement. The analysis for on-power operation and shutdown condition indicated that this strategy could be suitable for long-term and short-term reactivity and power distribution control for soluble boron-free operation.


Sign in / Sign up

Export Citation Format

Share Document