Application of Spectral Kurtosis on vibration signals for the detection of cavitation in centrifugal pumps

2021 ◽  
Vol 182 ◽  
pp. 108289
Author(s):  
G. Mousmoulis ◽  
C. Yiakopoulos ◽  
G. Aggidis ◽  
I. Antoniadis ◽  
I. Anagnostopoulos

This paper discusses the use of Maximum Correlation kurtosis deconvolution (MCKD) method as a pre-processor in fast spectral kurtosis (FSK) method in order to find the compound fault characteristics of the bearing, by enhancing the vibration signals. FSK only extracts the resonance bands which have maximum kurtosis value, but sometimes it might possible that faults occur in the resonance bands which has low kurtosis value, also the faulty signals missed due to noise interference. In order to overcome these limitations FSK used with MCKD, MCKD extracts various faults present in different resonance frequency bands; also detect the weak impact component, as MCKD also dealt with strong background noise. By obtaining the MCKD parameters like, filter length & deconvolution period, we can extract the compound fault feature characteristics.


2021 ◽  
pp. 1-33
Author(s):  
Jaafar Alsalaet

Abstract In this work, the reverse dispersion entropy (RDE) is used to process the squared envelope signal in order to detect nonstationarites. Based on the idea of spectral kurtosis (SK) and kurtogram, the squared envelope signal is first extracted by applying STFT to vibration signal. Then, as an alternative to negative Shannon entropy, the RDE is used to process the squared envelope to detect the range of frequencies at which the transients occur. The RDEgram color-coded map is used to represent the RDE values as a function of frequency and frequency resolution from which the ideal filter parameters can be inferred. Once, the best frequency and frequency bandwidth pair are found, an optimum FIR filter can be designed to filter the original vibration signal. The proposed method is tested against simulated and actual vibration signals and proved to be superior to existing methods.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 285 ◽  
Author(s):  
Yufei Li ◽  
Wanqing Song ◽  
Fei Wu ◽  
Enrico Zio ◽  
Yujin Zhang

A combination of spectral kurtosis (SK), based on Choi–Williams distribution (CWD) and hidden Markov models (HMM), accurately identifies initial gearbox failures and diagnoses fault types of gearboxes. First, using the LMD algorithm, five types of gearbox vibration signals are collected and decomposed into several product function (PF) components and the multicomponent signals are decomposed into single-component signals. Then, the kurtosis value of each component is calculated, and the component with the largest kurtosis value is selected for the CWD-SK analysis. According to the calculated CWD-SK value, the characteristics of the initial failure of the gearbox are extracted. This method not only avoids the difficulty of selecting the window function, but also provides original eigenvalues for fault feature classification. In the end, from the CWD-SK characteristic parameters at each characteristic frequency, the characteristic sequence based on CWD-SK is obtained with HMM training and diagnosis. The experimental results show that this method can effectively identify the initial fault characteristics of the gearbox, and also accurately classify the fault characteristics of different degrees.


2016 ◽  
Vol 16 (3) ◽  
pp. 149-159 ◽  
Author(s):  
Haifeng Huang ◽  
Huajiang Ouyang ◽  
Hongli Gao ◽  
Liang Guo ◽  
Dan Li ◽  
...  

Abstract Detection of incipient degradation demands extracting sensitive features accurately when signal-to-noise ratio (SNR) is very poor, which appears in most industrial environments. Vibration signals of rolling bearings are widely used for bearing fault diagnosis. In this paper, we propose a feature extraction method that combines Blind Source Separation (BSS) and Spectral Kurtosis (SK) to separate independent noise sources. Normal, and incipient fault signals from vibration tests of rolling bearings are processed. We studied 16 groups of vibration signals (which all display an increase in kurtosis) of incipient degradation after they are processed by a BSS filter. Compared with conventional kurtosis, theoretical studies of SK trends show that the SK levels vary with frequencies and some experimental studies show that SK trends of measured vibration signals of bearings vary with the amount and level of impulses in both vibration and noise signals due to bearing faults. It is found that the peak values of SK increase when vibration signals of incipient faults are processed by a BSS filter. This pre-processing by a BSS filter makes SK more sensitive to impulses caused by performance degradation of bearings.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3283
Author(s):  
Yin Luo ◽  
Yuejiang Han ◽  
Shouqi Yuan ◽  
Jianping Yuan

Off-design operation conditions might not only seriously affect the internal flow status of a centrifugal pump, but also result in additional energy loss and potential mechanical damage. Therefore, early-stage monitoring and predication on off-design operation conditions for centrifugal pumps have become essential. Single-value indicators have favorable factors such as a smaller amount of calculation and easier identification. As a result, industries prefer the more straightforward approach: obtaining single-value indicators directly from the signals which could be easier compared with accepted standards. The possibility of applying the single-value indicators of vibration into operation condition monitoring for a centrifugal pump is studied theoretically and experimentally, which shows that the statistical features of vibration might be suitable for hydraulic instability detection for a centrifugal pump.


2005 ◽  
Vol 293-294 ◽  
pp. 21-32 ◽  
Author(s):  
R.B. Randall

Many machine faults, such as local defects in bearings and gears, manifest themselves in vibration signals as a series of impulsive events. Kurtosis is a measure of the impulsiveness of a signal, and spectral kurtosis (SK) gives an indication of how the kurtosis (of a bandpass filtered signal) varies with frequency. This not only gives an indication of the frequency bands to be processed, but can also be used to generate a filter to extract the most impulsive part of a signal. The first step in calculating SK is to perform a time/frequency decomposition of the signal, and then calculate the kurtosis for each frequency line. The paper compares the original STFT (short time Fourier transform) with wavelet analysis for the time/frequency decomposition, and for determining the optimum combination of centre frequency and bandwidth for maximizing the SK. The paper also describes how the SK can be enhanced by “prewhitening” the signal using an autoregressive (AR) model, this sometimes revealing an incipient fault at a much earlier stage.


Sign in / Sign up

Export Citation Format

Share Document