Optimization of pH-universal O2 reduction electrocatalysis by precise control over structural variables via basic bathing

Author(s):  
Chuangchuang Yang ◽  
Peiyao Bai ◽  
Weiqi Liu ◽  
Shilin Wei ◽  
Wendu Zhang ◽  
...  
2016 ◽  
Vol 851 ◽  
pp. 221-225
Author(s):  
Marek Zboncak ◽  
Frantisek Ondreas ◽  
Josef Jancar

Despite substantial research efforts, the potential of polymer nanocomposites has still not been fully revealed, mainly due to poor control over the dispersion and alignment of nanoparticles (NPs). Since nanocomposite properties are controlled by the structural variables, it is crucial to achieve control over the NP assembly process.Self-assembly of NPs offers limited control over the NP spatial arrangement. This process results in a poorly controlled variation of simple structures such as agglomerates, clusters and dispersed NPs with the resulting structure strongly dependent a on wide range of thermodynamic parameters.On the other hand, force-assembly exploits interactions between particles induced by external force fields overcoming the thermodynamic ones. Stimulus of external electric, magnetic or electro-magnetic field is applied as the main force controlling the assembly of NPs. Understanding this process gives us the opportunity to create prescribed NP structures with controlled shape, size, and anisotropy by simple change of the force field. Precise control of structure formation on different length scales (from nanoto macro) gives us the opportunity to imitate hierarchical biological structures possessing unique balance of stiffness and toughness.Here, we report on magnetic field force assembly of Fe3O4 nanoparticles in the polyurethane matrix. Resulting NP chain structures were several NP wide and tens of micrometers long aligned along the magnetic force lines. Without the magnetic field, NP agglomerates of random size and shape were formed due to their self-assembly.


Author(s):  
A. Engel ◽  
A. Holzenburg ◽  
K. Stauffer ◽  
J. Rosenbusch ◽  
U. Aebi

Reconstitution of solubilized and purified membrane proteins in the presence of phospholipids into vesicles allows their functions to be studied by simple bulk measurements (e.g. diffusion of differently sized solutes) or by conductance measurements after transformation into planar membranes. On the other hand, reconstitution into regular protein-lipid arrays, usually forming at a specific lipid-to-protein ratio, provides the basis for determining the 3-dimensional structure of membrane proteins employing the tools of electron crystallography.To refine reconstitution conditions for reproducibly inducing formation of large and highly ordered protein-lipid membranes that are suitable for both electron crystallography and patch clamping experiments aimed at their functional characterization, we built a flow-dialysis device that allows precise control of temperature and flow-rate (Fig. 1). The flow rate is generated by a peristaltic pump and can be adjusted from 1 to 500 ml/h. The dialysis buffer is brought to a preselected temperature during its travel through a meandering path before it enters the dialysis reservoir. A Z-80 based computer controls a Peltier element allowing the temperature profile to be programmed as function of time.


Author(s):  
M.V. Parthasarathy ◽  
C. Daugherty

The versatility of Low Temperature Field Emission SEM (LTFESEM) for viewing frozen-hydrated biological specimens, and the high resolutions that can be obtained with such instruments have been well documented. Studies done with LTFESEM have been usually limited to the viewing of small organisms, organs, cells, and organelles, or viewing such specimens after fracturing them.We use a Hitachi 4500 FESEM equipped with a recently developed BAL-TEC SCE 020 cryopreparation/transfer device for our LTFESEM studies. The SCE 020 is similar in design to the older SCU 020 except that instead of having a dedicated stage, the SCE 020 has a detachable cold stage that mounts on to the FESEM stage when needed. Since the SCE 020 has a precisely controlled lock manipulator for transferring the specimen table from the cryopreparation chamber to the cold stage in the FESEM, and also has a motor driven microtome for precise control of specimen fracture, we have explored the feasibility of using the LTFESEM for multiple-fracture studies of the same sample.


2001 ◽  
Vol 60 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Holger Schmid

Cannabis use does not show homogeneous patterns in a country. In particular, urbanization appears to influence prevalence rates, with higher rates in urban areas. A hierarchical linear model (HLM) was employed to analyze these structural influences on individuals in Switzerland. Data for this analysis were taken from the Switzerland survey of Health Behavior in School-Aged Children (HBSC) Study, the most recent survey to assess drug use in a nationally representative sample of 3473 15-year-olds. A total of 1487 male and 1620 female students indicated their cannabis use and their attributions of drug use to friends. As second level variables we included address density in the 26 Swiss Cantons as an indicator of urbanization and officially recorded offences of cannabis use in the Cantons as an indicator of repressive policy. Attribution of drug use to friends is highly correlated with cannabis use. The correlation is even more pronounced in urban Cantons. However, no association between recorded offences and cannabis use was found. The results suggest that structural variables influence individuals. Living in an urban area effects the attribution of drug use to friends. On the other hand repressive policy does not affect individual use.


1989 ◽  
Vol 61 (03) ◽  
pp. 497-501 ◽  
Author(s):  
E Seifried ◽  
P Tanswell ◽  
D Ellbrück ◽  
W Haerer ◽  
A Schmidt

SummaryPharmacokinetics and systemic effects of recombinant tissue type plasminogen activator (rt-PA) were determined during coronary thrombolysis in 12 acute myocardial infarction patients using a consecutive intravenous infusion regimen. Ten mg rt-PA were infused in 2 minutes resulting in a peak plasma concentration (mean ±SD) of 3310±950 ng/ml, followed by 50 mg in 1 h and 30 mg in 1.5 h yielding steady state plasma levels of. 2210±470 nglml and 930±200 ng/ml, respectively. All patients received intravenous heparin. Total clearance of rt-PA was 380±74 ml/min, t,½α was 3.6±0.9 min and t,½β was 16±5.4 min.After 90 min, in plasma samples containing anti-rt-PA-IgG to inhibit in vitro effects, fibrinogen was decreased to 54%, plasminogen to 52%, α2-antiplasmin to 25%, α2-macroglobulin to 90% and antithrombin III to 85% of initial values. Coagulation times were prolonged and fibrin D-dimer concentrations increased from 0.40 to 2.7 μg/ml. It is concluded that pharmacokinetics of rt-PA show low interpatient variability and that its short mean residence time in plasma allows precise control of therapy. Apart from its moderate effect on the haemostatic system, rt-PA appears to lyse a fibrin pool in addition to the coronary thrombus.


2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2018 ◽  
Author(s):  
Lucie Nurdin ◽  
Denis M. Spasyuk ◽  
Laura Fairburn ◽  
Warren Piers ◽  
Laurent Maron

Diprotonation of a remarkably stable, toluene soluble cobalt peroxo complex supported by a neutral, dianionic pentadentate ligand leads to facile O-O bond cleavage and production of a highly reactive Co(IV) oxyl cation intermediate that dimerizes and releases O<sub>2</sub>. These processes are relevant to both O<sub>2</sub> reduction and O<sub>2</sub> evolution and the mechanism was probed in detail both experimentally and computationally.


2018 ◽  
Vol 24 (21) ◽  
pp. 2425-2431 ◽  
Author(s):  
Cao Wu ◽  
Zhou Chen ◽  
Ya Hu ◽  
Zhiyuan Rao ◽  
Wangping Wu ◽  
...  

Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document