An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2-dichloroethane over the Ru/WO3 or Ru/TiO2 catalyst

Author(s):  
Xiaohui Yu ◽  
Lingyun Dai ◽  
Jiguang Deng ◽  
Yuxi Liu ◽  
Lin Jing ◽  
...  
Keyword(s):  
Fuel ◽  
2004 ◽  
Vol 83 (6) ◽  
pp. 671-677 ◽  
Author(s):  
Shengji Wu ◽  
Md.Azhar Uddin ◽  
Shinsuke Nagamine ◽  
Eiji Sasaoka

Author(s):  
Terence J. Pagano ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
Hengchun Ye ◽  
F. Martin Ralph ◽  
...  

AbstractAtmospheric rivers (ARs) are long and narrow regions of strong horizontal water vapor transport. Upon landfall, ARs are typically associated with heavy precipitation and strong surface winds. A quantitative understanding of the atmospheric conditions that favor extreme surface winds during ARs has implications for anticipating and managing various impacts associated with these potentially hazardous events. Here, a global AR database (1999–2014) with relevant information from MERRA-2 reanalysis, QuikSCAT and AIRS satellite observations are used to better understand and quantify the role of near-surface static stability in modulating surface winds during landfalling ARs. The temperature difference between the surface and 1 km MSL (ΔT; used here as a proxy for near-surface static stability), and integrated water vapor transport (IVT) are analyzed to quantify their relationships to surface winds using bivariate linear regression. In four regions where AR landfalls are common, the MERRA-2-based results indicate that IVT accounts for 22-38% of the variance in surface wind speed. Combining ΔT with IVT increases the explained variance to 36-52%. Substitution of QuikSCAT surface winds and AIRS ΔT in place of the MERRA-2 data largely preserves this relationship (e.g., 44% compared to 52% explained variance for USA West Coast). Use of an alternate static stability measure–the bulk Richardson number–yields a similar explained variance (47%). Lastly, AR cases within the top and bottom 25% of near-surface static stability indicate that extreme surface winds (gale or higher) are more likely to occur in unstable conditions (5.3%/14.7% during weak/strong IVT) than in stable conditions (0.58%/6.15%).


2021 ◽  
pp. 53-60
Author(s):  
A. E. Aloyan ◽  
◽  
A. N. Yermakov ◽  
V. O. Arutyunyan ◽  
◽  
...  

The results of one-dimensional calculations of the height profiles of nucleated sulfate aerosol particles for the northern mid-latitudes and tropics in winter are presented. Numerical calculations were performed using a three-dimensional model of the transport and transformation of multicompo- nent gas and aerosol substances in the atmosphere, incorporating photochemistry, nucleation involving neutral molecules and ions, as well as condensation/evaporation and coagulation. It is found that the resulting dynamics of the formation of aerosol particle nuclei is not a simple sum of ion and binary (water vapor/sulfuric acid) nucleation rates. This dynamics is determined by the ratio of critical radii of nucleated particles due to binary and ion nucleation of these substances (rcr_bin and rcr_ion) depending on temperature, relative humidity, and ionization rate. This should be taken into account in modeling the gas and aerosol composition of the atmosphere and comparing calculated and observed data.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 403 ◽  
Author(s):  
Abdoulaye Sy ◽  
Bouya Diop ◽  
Joël Van Baelen ◽  
Christophe Duroure ◽  
Yahya Gour ◽  
...  

We present a study of upper tropospheric westward transport of air masses coming from the Indian monsoon zone over the period 1998–2008. The objective is to characterize upper tropospheric transport of water vapor from the Indian to Sahelian regions, and to improve the understanding of the dynamical mechanisms that govern water vapor variations in West Africa and the interconnections between India and the Sahel, focusing on the direct role of the Indian monsoon region on Sahel tropospheric water vapor and precipitation. The calculations of forward trajectories with LACYTRAJ (LACY TRAJectory code) and humidity fluxes show that a substantial part (40 to 70% at 300 hPa) of trajectories coming from the upper troposphere of the monsoon region crossed the Sahelian region in a few days (3–14 days), and water vapor fluxes connecting these two regions are established when the Indian monsoon begins at latitudes higher than 15° N in its south–north migration. The intensity and orientation of water vapor fluxes are related to the tropical easterly jet, but they are from the east above the high convection zones. Between 1998 and 2008, these fluxes between the 500–300 hPa pressure levels are associated with precipitation in Sahel only if they are from the east and with an intensity exceeding 8 kg·(m·s)−1.


ACS Omega ◽  
2020 ◽  
Vol 5 (29) ◽  
pp. 18050-18063
Author(s):  
Yujie Wang ◽  
Shiheng Deng ◽  
Boping Liu ◽  
Yulong Jin

Author(s):  
Thomas Anderl

The broader public demand reproducibility of scientific results particularly related to hot societal topics. The present work applies the 80:20-rule to climate change, concentrating on the essentials from the readily observable and identifying the inherent relationships in their potential simplicity. Observations on 400 Mio. years of paleoclimate are found to well constrain the compound universal climate role of CO 2. Combined with observations on the industrial-era atmospheric CO 2 and ocean heat evolvement, climate risk assessment and projections on the economic boundaries are performed. Independently in conjunction with energy budget studies, simple models are presented for the fundamental natural processes related to: (i) water vapor and CO 2 effect on temperature; (ii) transient and equilibrium climate; (iii) heating from the V/R-T (vibrational/rotational to translational) energy transfer; (iv) Earth emissivity changing with surface temperature; (v) water vapor for Earths energy balance maintenance; (vi) rainfall pattern altering with temperature; (vii) natures reaction on the anthropogenic energy consumption. In conclusion, realistic estimates point at precluding positive economic growth for the foreseeable future if temperatures are to be given a reasonable chance to become sustainably contained within sensible limits.


2021 ◽  
Author(s):  
Sinikka Paulus ◽  
Tarek S. El-Madany ◽  
René Orth ◽  
Jacob A. Nelson ◽  
Anke Hildebrandt ◽  
...  

<p>Current climate change scenarios project altered rainfall frequencies which boosts scientific interest in ecosystems' responses to prolonged dry conditions. Under less rainfall, NRWI may play an increasingly important role, Yet, only sparse data are available to assess the role of non-rainfall water input (NRWI) during times of low water availability across ecoregions. Particularly, soil water vapor adsorption has received little attention at field scale. This term is used for the phase change of water from gas to liquid at highly negative matric potential. Under such conditions, water condensates already at relative humidity < 100%. The process has been broadly studied in laboratories but little is known from field experiments, which rarely cover periods longer than one month. Yet, several studies report soil water uptake from the atmosphere during soil surface cooling and in the early mornings. Lysimeters have played a strong role in quantifying these NRWI. Eddy Covariance (EC) measurements, in contrast, are known for their limited data quality under nighttime conditions when a stable boundary layer hinders the turbulent exchange of mass and energy. Therefore, EC has not been tested yet to trace soil adsorption.<br>    <br>In this contribution we adapt a methodology to derive NRWI from lysimeters data and compare them to EC measurements. We focus mainly on adsorption and evaluate the consistency between adsorption estimated with the lysimeters and negative (downward) latent heat (LE) fluxes from EC. We apply the method to a data set that comprises three years of observations from a semi-arid Spanish tree grass ecosystem. </p><p>Our results show that during the dry season the gradient in water vapour established between the atmosphere (more humid) and the soil pores (more dry) leads to adsorption by the soil. The observations from both instruments suggest that during the dry season, nightly transport of humidity from the atmosphere towards the ground is driven by soil vapor adsorption. This process occurs each night typically in the second half, but begins increasingly earlier in the evening the dryer the conditions are. The amount of water adsorbed is not directly comparable between EC and the lysimeter readings. With the latter, we quantified a yearly mean uptake between 8.8 mm and 25 mm per year. With the lysimeters we measure additionally 23.1 mm of water that condenses as dew and fog in winter, when EC is impeded by stable conditions. We further analyze EC LE measurements from different sites to evaluate if adsorption can be detected from EC data collected at different locations.</p><p>We conclude that the temporal patterns of adsorption estimates from lysimeters match the nighttime negative LE data from the EC technique, although the absolute numbers are uncertain. This might open interesting perspective to fill the knowledge gap of the role of soil water vapor adsorption from the atmosphere at field scale and open the opportunity to broaden the topic across ecosystem research communities. Our results also highlight a potential shortcoming in the interpretation of EC measurements in the case that negative nighttime values, representing physically plausible adsorption, are neglected.</p>


Sign in / Sign up

Export Citation Format

Share Document