Short-term impact of green certificates and CO2 emissions trading in the Swedish district heating sector

2006 ◽  
Vol 83 (12) ◽  
pp. 1368-1383 ◽  
Author(s):  
David Knutsson ◽  
Sven Werner ◽  
Erik O. Ahlgren
Automatica ◽  
2008 ◽  
Vol 44 (6) ◽  
pp. 1608-1620 ◽  
Author(s):  
Pedro Linares ◽  
Francisco Javier Santos ◽  
Mariano Ventosa ◽  
Luis Lapiedra

2016 ◽  
Vol 25 (1) ◽  
pp. 119-128
Author(s):  
Chao Gong ◽  
Changchun Song ◽  
Xinhou Zhang ◽  
Wenwen Tan ◽  
Tianhua Qiao

2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


2021 ◽  
Vol 19 (1) ◽  
pp. e1102
Author(s):  
Maroua Dachraoui ◽  
Aurora Sombrero

Aim of study: To evaluate the effects of conventional tillage (CT) and no tillage (NT) systems on the soil organic carbon (SOC) changes, CO2 emissions and their relation with soil temperature and grain yield in a monoculture of irrigated maize during six years.Area of study: In Zamadueñas experimental field in the Spanish province of Valladolid, from 2011 to 2017.Material and methods: The SOC content was determined by collecting soil samples up to 30 cm in November at two years interval. Short-term CO2 emissions were measured simultaneously with soil temperature using a respiration chamber and a hand-held probe immediately before, after every tillage operation and during the maize cycle.Main results: The SOC stock of the top 30 cm soil layers was 13% greater under NT than CT. Short-term CO2 emissions were significantly higher under CT ranging from 0.8 to 3.4 g CO2 m-2 h-1 immediately after tillage while under NT system, soil CO2 fluxes were low and stable during this study period. During the first 48 h following tillage, cumulative CO2 emissions ranged from 0.6 to 2.4 Mg CO2 ha-1 and from 0.2 to 0.3 Mg CO2 ha-1 under CT and NT systems, respectively. Soil temperature did not show significant correlation with CO2 emissions; however, it depended mostly on the time of measurement.Research highlights: No tillage increased the SOC accumulation in the topsoil layer, reduced CO2 emissions without decreasing maize grain yield and minimized the impact on climate change compared to CT system.


Author(s):  
Fumei He ◽  
Ke-Chiun Chang ◽  
Min Li ◽  
Xueping Li ◽  
Fangjhy Li

We used the Bootstrap ARDL method to test the relationship between the export trades, FDI and CO2 emissions of the BRICS countries. We found that China's foreign direct investment and the lag one period of CO2 emissions have a cointegration on exports. South Africa's foreign direct investment and CO2 emissions have a cointegration relationship with the lag one period of exports, and South Africa's the lag one period of exports and foreign direct investment have a cointegration relationship with the lag one period of CO2 emissions. But whether it is China or South Africa, these three variables have no causal relationship in the long-term. Among the variables of other BRICS countries, Russia is the only country showed degenerate case #1 in McNown et al. mentioned in their paper. When we examined short-term causality, we found that CO2 emissions and export trade showed a reverse causal relationship, while FDI and carbon emissions were not so obvious. Export trade has a positive causal relationship with FDI. Those variables are different from different situations and different countries.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2122 ◽  
Author(s):  
Guixiang Xue ◽  
Yu Pan ◽  
Tao Lin ◽  
Jiancai Song ◽  
Chengying Qi ◽  
...  

The smart district heating system (SDHS) is an important element of the construction of smart cities in Northern China; it plays a significant role in meeting heating requirements and green energy saving in winter. Various Internet of Things (IoT) sensors and wireless transmission technologies are applied to monitor data in real-time and to form a historical database. The accurate prediction of heating loads based on massive historical datasets is the necessary condition and key basis for formulating an optimal heating control strategy in the SDHS, which contributes to the reduction in the consumption of energy and the improvement in the energy dispatching efficiency and accuracy. In order to achieve the high prediction accuracy of SDHS and to improve the representation ability of multi-time-scale features, a novel short-term heating load prediction algorithm based on a feature fusion long short-term memory (LSTM) model (FFLSTM) is proposed. Three characteristics, namely proximity, periodicity, and trend, are found after analyzing the heating load data from the aspect of the hourly time dimension. In order to comprehensively utilize the data’s intrinsic characteristics, three LSTM models are employed to make separate predictions, and, then, the prediction results based on internal features and other external features at the corresponding moments are imported into the high-level LSTM model for fusion processing, which brings a more accurate prediction result of the heating load. Detailed comparisons between the proposed FFLSTM algorithm and the-state-of-art algorithms are conducted in this paper. The experimental results show that the proposed FFLSTM algorithm outperforms others and can obtain a higher prediction accuracy. Furthermore, the impact of selecting different parameters of the FFLSTM model is also studied thoroughly.


Sign in / Sign up

Export Citation Format

Share Document