Modelling plastic heating and melting in a semi-batch pyrolysis reactor

2020 ◽  
pp. 116375
Author(s):  
Shawki Mazloum ◽  
Sary Awad ◽  
Nadine Allam ◽  
Youssef Aboumsallem ◽  
Khaled Loubar ◽  
...  
Keyword(s):  
2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Author(s):  
Kundan Kumar Jha ◽  
T.T.M. Kannan ◽  
J. Chandradass ◽  
D. Vincent Herald Wilson ◽  
Ashutosh Das

Author(s):  
Werner O. Filtvedt ◽  
Morten Melaaen ◽  
Arve Holt ◽  
Massoud Javidi ◽  
Birger Retterstøl Olaisen

The article presents a novel design for a distribution plate. The solution is suitable for a reactor vessel where a reactant gas needs to be maintained at a different temperature from the reaction chamber in order to avoid unwanted occurrences, such as clogging of the distribution plate. A normal procedure involves cooling of the distribution plate which is reported to either increase heat loss substantially or yield insufficient temperature in parts of the reaction chamber. The problem is especially important for reactors where the difference in reactant inlet temperature and desired reaction temperature is large. The investigated design utilized materials of very different thermal conductivity to only cool specific parts of the distribution arrangement and thereby minimize heat loss. Our system is a distribution plate for use in a fluidized bed reactor for silane pyrolysis. However, the solution is general and may be utilized in many types of vessels and chemical reactors.


2008 ◽  
Vol 82 (3) ◽  
pp. 510-519 ◽  
Author(s):  
Jin Yang ◽  
Murlidhar Gupta ◽  
Xavier Roy ◽  
Christian Roy

1970 ◽  
Vol 46 (3) ◽  
pp. 313-322 ◽  
Author(s):  
ATMK Hasan ◽  
M Mohiuddin ◽  
MB Ahmed ◽  
IJ Poly ◽  
M Asadullah ◽  
...  

The objective of the present work is to install a modified suitable and compatible reactor system for the efficient production of renewable liquid fuel (bio-oil) from agro-based bio-mass. This new type of reactor system contains a combustor connected with the upper end of the reactor chamber. The bottom end of the reactor is connected with the bottom part of the combustor by a stainless steel pipe through which hot sand is circulated by the force of air pump. Thus, effective heat transfer from the continuously circulated heated sand as well as efficient biomass conversion into the reactor can be obtained. In this work, jute stick and bagasse abundantly available in Bangladesh were pyrolyzed separately in a continuous feeding circulating fluidized bed reactor at around 500°C for bio-oil production. The total bio-oil yields from bagasse and jute stick were about 69.5 wt% and 68.2 wt% respectively, which are higher than the yields obtained from fixed bed pyrolysis reactor. The total yields of char contents were 19.4 wt% and 21.7wt% after complete pyrolysis of bagasse and jute stick respectively, which are less than that of char yields obtained from fixed bed pyrolysis reactor. Physical and chemical analyses of bio-oils were carried out by conventional methods. The density, viscosity, pH, acid value, water, lignin, solid and ash contents of bio-oils obtained from both jute stick and bagasse were found to be 1.1 g/cc, 3.1 cp, 4.1, 126.3 mgKOH/g, 14.0 wt%, 2.5wt%, 0.05wt%, 0.03wt%, and 1.12 g/cc, 3.2cp, 4.0, 127.1 mgKOH/g, 13.0 wt%, 2.5wt%, 0.015wt%, 0.025wt%, respectively. Key words: Renewable energy; Bio-mass; Bio-oil; Pyrolysis; Fluid bed circulating reactor DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9036 BJSIR 2011; 46(3): 313-322


2021 ◽  
Author(s):  
Syazmi Zul Arif Hakimi Saadon ◽  
Noridah Osman ◽  
Moviin Damodaran ◽  
Shan En Liew

Abstract Interest in torrefaction has improved along the recent years and it has been studied extensively as a mean of preparing solid fuels. Biomass to be considered as a renewable source of energy must endeavor improvement continuously and where it is more sustainable going forward in which can come from waste product, wild and cultivated plant. The aim of this study is to investigate the effect of temperature and residence time of wild Napier grass and Oil palm petiole from waste. The torrefied samples were derived by pyrolysis reactor mimicking torrefaction procedure. The temperature parameter ranges between 220 and 300 ℃ while residence time parameter is from 10 minutes to 50 minutes of reaction. It was found that as temperature and time increasing, moisture content and amount of O and H atoms decreases as well as both mass and energy yield, but calorific value and the energy density increase along with both two parameters. Between the two parameters, the temperature variation shows more significant changes to the torrefied samples as compared time. The optimized temperature and time are found to be 260 ℃ and 30 minutes, respectively. Remarkably, the usage of pyrolyzer as torrefaction reaction has proved to be a good option since they share similar characteristics while can also produce product with similar properties reflecting torrefaction process.


Sign in / Sign up

Export Citation Format

Share Document