scholarly journals Some cues are more equal than others: Cue plausibility for false alarms in baggage screening

2020 ◽  
Vol 82 ◽  
pp. 102916
Author(s):  
Alain Chavaillaz ◽  
Adrian Schwaninger ◽  
Stefan Michel ◽  
Juergen Sauer
2013 ◽  
Vol 4 (1) ◽  
pp. 1-16
Author(s):  
Anuar Aguirre ◽  
Jose F. Espiritu ◽  
Salvador Hernández

Various mathematical methods and metaheuristic approaches have been developed in the past to address optimization problems related to aviation security. One such problem deals with a key component of an aviation security system, baggage and passenger screening devices. The decision process to determine which devices to procure by aviation and security officials, and how and where to deploy them can be quite challenging. In this study, two evolutionary algorithms are developed to obtain optimal baggage screening strategies, which minimize the expected annual total cost. Here, the expected annual cost function is composed of the purchasing and operating costs, as well as the costs associated to false alarms and false clears. A baggage screening strategy consists of various hierarchical levels of security screening devices through which a checked bag may pass through. A solution to the aviation baggage screening problem entails the number and type of devices to be installed at each hierarchical level. Solutions obtained from a comparison of a Genetic and a Memetic algorithm are presented. In addition, to illustrate the performance of both algorithms, different computational experiments utilizing the developed algorithms are also presented.


2019 ◽  
Vol 30 (3) ◽  
pp. 157-168
Author(s):  
Helmut Hildebrandt ◽  
Jana Schill ◽  
Jana Bördgen ◽  
Andreas Kastrup ◽  
Paul Eling

Abstract. This article explores the possibility of differentiating between patients suffering from Alzheimer’s disease (AD) and patients with other kinds of dementia by focusing on false alarms (FAs) on a picture recognition task (PRT). In Study 1, we compared AD and non-AD patients on the PRT and found that FAs discriminate well between these groups. Study 2 served to improve the discriminatory power of the FA score on the picture recognition task by adding associated pairs. Here, too, the FA score differentiated well between AD and non-AD patients, though the discriminatory power did not improve. The findings suggest that AD patients show a liberal response bias. Taken together, these studies suggest that FAs in picture recognition are of major importance for the clinical diagnosis of AD.


2006 ◽  
Author(s):  
Stephen R. Dixon ◽  
Christopher D. Wickens ◽  
Jason S. McCarley
Keyword(s):  

2013 ◽  
Author(s):  
Angelica Szani ◽  
Katherine Bowers ◽  
Lucienne Pereira-Pasarin ◽  
Marianne E. Lloyd
Keyword(s):  

2020 ◽  
Vol 2020 (14) ◽  
pp. 294-1-294-8
Author(s):  
Sandamali Devadithya ◽  
David Castañón

Dual-energy imaging has emerged as a superior way to recognize materials in X-ray computed tomography. To estimate material properties such as effective atomic number and density, one often generates images in terms of basis functions. This requires decomposition of the dual-energy sinograms into basis sinograms, and subsequently reconstructing the basis images. However, the presence of metal can distort the reconstructed images. In this paper we investigate how photoelectric and Compton basis functions, and synthesized monochromatic basis (SMB) functions behave in the presence of metal and its effect on estimation of effective atomic number and density. Our results indicate that SMB functions, along with edge-preserving total variation regularization, show promise for improved material estimation in the presence of metal. The results are demonstrated using both simulated data as well as data collected from a dualenergy medical CT scanner.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2021 ◽  
Vol 11 (9) ◽  
pp. 3763
Author(s):  
Yunlong Zou ◽  
Jinyu Zhao ◽  
Yuanhao Wu ◽  
Bin Wang

Space object recognition in high Earth orbits (between 2000 km and 36,000 km) is affected by moonlight and clouds, resulting in some bright or saturated image areas and uneven image backgrounds. It is difficult to separate dim objects from complex backgrounds with gray thresholding methods alone. In this paper, we present a segmentation method of star images with complex backgrounds based on correlation between space objects and one-dimensional (1D) Gaussian morphology, and the focus is shifted from gray thresholding to correlation thresholding. We build 1D Gaussian functions with five consecutive column data of an image as a group based on minimum mean square error rules, and the correlation coefficients between the column data and functions are used to extract objects and stars. Then, lateral correlation is repeated around the identified objects and stars to ensure their complete outlines, and false alarms are removed by setting two values, the standard deviation and the ratio of mean square error and variance. We analyze the selection process of each thresholding, and experimental results demonstrate that our proposed correlation segmentation method has obvious advantages in complex backgrounds, which is attractive for object detection and tracking on a cloudy and bright moonlit night.


Sign in / Sign up

Export Citation Format

Share Document