Effect of the specific heat ratio on transonic axial compressor rotor performances

2019 ◽  
Vol 148 ◽  
pp. 307-315 ◽  
Author(s):  
Zhitao Tian ◽  
Qun Zheng ◽  
Adil Malik ◽  
Xingyun Jia ◽  
Bin Jiang
2011 ◽  
Vol 308-310 ◽  
pp. 1519-1522
Author(s):  
Fang Xie ◽  
Chang Jiang Liu ◽  
You Jun Wang

Numerical method using HI and HOH meshing combined B - L turbulent model and S - A turbulent model separately based on the Rotor 37 compressor Rotor was applied to the steady flow. results on pressure characteristic curve, stall point forecast etc were compared with related experimental data. This paper discussed calculation precision influenced by the turbulence model and numerical computation grid. This numerical investigation was basis for subsequent compressor internal flow field study.


Author(s):  
Kirubakaran Purushothaman ◽  
Sankar Kumar Jeyaraman ◽  
Ajay Pratap ◽  
Kishore Prasad Deshkulkarni

This study discusses in detail the aeroelastic flutter investigation of a transonic axial compressor rotor using computational methods. Fluid structure interaction approach is used in this method to evaluate the unsteady aerodynamic force and work done of a vibrating blade in CFD domain. Energy method and work per cycle approach is adapted for this flutter prediction. A framework has been developed to estimate the work per cycle and aerodynamic damping ratio. Based on the aerodynamic damping ratio, occurrence of flutter is estimated for different inter blade phase angles. Initially, the baseline rotor blade design was having negative aerodynamic damping at part speed conditions. The main cause for this flutter occurrence was identified as large flow separation near blade tip region due to high incidence angles. The unsteadiness in the flow was leading to aerodynamic force fluctuation matching with natural frequency of blade, resulting in excitation of the blades. Hence axially skewed slot casing treatment was implemented to reduce the flow separation at blade tip region to alleviate the onset of flutter. By this method, the stall margin and aerodynamic damping of the test compressor was improved and flutter was avoided.


Author(s):  
Kenneth L. Suder

A detailed experimental investigation to understand and quantify the development of blockage in the flow field of a transonic, axial flow compressor rotor (NASA Rotor 37) has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. The impact of the shock on the blockage development, pertaining to both the shock / boundary layer interactions and the shock / tip clearance flow interactions, is discussed. The results indicate that for this rotor the blockage in the endwall region is 2–3 times that of the core flow region, and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.


2000 ◽  
Vol 2000.53 (0) ◽  
pp. 1-2
Author(s):  
Kazutoyo YAMADA ◽  
Yoshinori TAGUCHI ◽  
Kazuhisa SAIKI ◽  
Masato FURUKAWA ◽  
Masahiro INOUE

Author(s):  
Garth V. Hobson ◽  
Anthony J. Gannon ◽  
Scott Drayton

A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial compressor rotor with splitter blades. Predictive numerical simulations were conducted and experimental data were collected in a Transonic Compressor Rig. This study advanced the understanding of splitter blade geometry, placement, and performance benefits. In particular, it was determined that moving the splitter blade forward in the passage between the main blades, which was a departure from the trends demonstrated in the few available previous transonic axial compressor splitter blade studies, increased the mass flow range with no loss in overall performance. With a large 0.91 mm (0.036 in) tip clearance, to preserve the integrity of the rotor, the experimentally measured peak total-to-total pressure ratio was 1.69 and the peak total-to-total isentropic efficiency was 72 percent at 100 percent design speed. Additionally, a higher than predicted 7.5 percent mass flow rate range was experimentally measured, which would make for easier engine control if this concept were to be included in an actual gas turbine engine.


Sign in / Sign up

Export Citation Format

Share Document