Microstructure and corrosion resistance behavior of ceramic coatings on biomedical NiTi alloy prepared by micro-arc oxidation

2008 ◽  
Vol 254 (20) ◽  
pp. 6642-6647 ◽  
Author(s):  
J.L. Xu ◽  
F. Liu ◽  
F.P. Wang ◽  
D.Z. Yu ◽  
L.C. Zhao
2014 ◽  
Vol 960-961 ◽  
pp. 143-147
Author(s):  
Jun Zhao ◽  
Jian Jun Xi ◽  
Zhi Gang Wang ◽  
Chun Ping Zhao

Ceramic coatings were prepared on ZM5 magnetism substrate by micro-arc oxidation method with and without magnetism filed in silicate electrolyte. The morphology of the MAO coatings was investigated by scanning electron microscope (SEM). The friction coefficient of the MAO coatings prepared with magnetism is about 0.2 and more stable than the coatings prepared without magnetism. The polarization test indicated that the coating prepared with magnetism has better corrosion resistance.


2010 ◽  
Vol 105-106 ◽  
pp. 505-508 ◽  
Author(s):  
Zhen Dong Wu ◽  
Zhong Wen Yao ◽  
Fang Zhou Jia ◽  
Zhao Hua Jiang

The coatings containing zirconia were produced on LY12 Aluminium alloy by micro-arc oxidation in K2ZrF6 and NaH2PO2 solution. The composition, structure, hardness, friction and wear resistance and corrosion resistance of the coating were studied by XRD, SEM, EDS, ball-on-disk friction tester and electrochemical analyzer, respectively. The results show that coating was composed of m-ZrO2 and t-ZrO2. There were a large amount of Zr and O and a little Al, P and K in the coating. The thickness of coating prepared for 3h was 168μm and the maximum value of the hardness was up to 16.75GPa. The friction and wear resistance and corrosion resistance were improved, compared with the LY12 aluminium alloy substrate.


Author(s):  
Bo Xu ◽  
Yafeng He ◽  
Xiangzhi Wang ◽  
Weimin Gan

Abstract Ceramic coatings were prepared on the surface of 7050 highstrength aluminum alloy using micro-arc oxidation in an aluminate electrolyte with added graphene. To analyze the surface morphology, roughness, phase composition, and corrosion resistance, scanning electron microscopy, X-ray diffraction, X-ray photoelectron, and electrochemical measurements were used, respectively. The addition of 9 g · L-1 of graphene to the electrolyte decreased the micro-pore size of the composite coatings and improved the density. In addition, with the addition of graphene, the roughness was the lowest, and the corrosion resistance was significantly improved.


Author(s):  
Yu Zong ◽  
Renguo Song ◽  
Tianshun Hua ◽  
Siwei Cai

Abstract In this paper, ceramic coatings were prepared on the surface of 7050 high strength aluminum alloy using a micro-arc oxidation process in a silicate electrolyte combined with the rare earth element cerium or graphene. To analyze the surface morphology, roughness, phase composition, and corrosion resistance, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectrometry, and electrochemical measurements were used, respectively. It was shown that the micropore size of the composite coatings, which mainly consisted of α-Al2O3 and γ-Al2O3, decreases and the density improved with the simultaneous addition of 4 g · L-1 of CeO2 and 10 g · L-1 of graphene to the electrolyte. In addition, with the addition of CeO2 and graphene, the roughness was the lowest and the corrosion resistance was significantly improved.


2014 ◽  
Vol 971-973 ◽  
pp. 85-88
Author(s):  
Yun Long Zhang ◽  
Cheng Hai Li ◽  
Ming Hu ◽  
Yu Min Zhang

The micro-arc oxidation technology were utilized to fabricated the ceramics coating in order to improve the corrosion resistance of Ti–6Al–4V alloy (TC4). The sodium silicate solution was introduced into the electrolyte solution for increasing the coating properties. The effect of the sodium silicate content on the phase composition, surface morphology and potentiodynamic polarization behavior was investigated. The results showed that the increase of Na2SiO3 concertration was benefit to improve corrosion resistance of the MAO coating of TC4 alloy. Key words: Micro-arc oxidation, Ceramic Coatings, Corrosion Resistance.


2018 ◽  
Vol 764 ◽  
pp. 28-38 ◽  
Author(s):  
Yan Shen ◽  
Hong Xiang Wang ◽  
Yi Peng Pan

In order to improve the corrosion resistance of shock absorber for ships, the alumina ceramic coatings are carried out on the surface of aluminum alloy shock absorber by micro arc oxidation (MAO) technology. The microstructure and anti-corrosion performance of the MAO coatings were investigated experimentally. This paper mainly focuses on the experimental work to determine the effect of current density on the structural characteristics and corrosion resistance of MAO coatings. The results show that the current density has a significant influence on the preparation of MAO coating during the process. The surface of the coating becomes more compact and smooth with the cathode voltage of 7 A.dm-2. Furthermore, the anti-corrosion performance of the MAO coatings can effectively be improved at the current density of 7 A.dm-2.


Sign in / Sign up

Export Citation Format

Share Document