The Effects of Magnetic Field on Micro-Arc Oxidation Ceramic Coating on Magnesium Alloys

2014 ◽  
Vol 960-961 ◽  
pp. 143-147
Author(s):  
Jun Zhao ◽  
Jian Jun Xi ◽  
Zhi Gang Wang ◽  
Chun Ping Zhao

Ceramic coatings were prepared on ZM5 magnetism substrate by micro-arc oxidation method with and without magnetism filed in silicate electrolyte. The morphology of the MAO coatings was investigated by scanning electron microscope (SEM). The friction coefficient of the MAO coatings prepared with magnetism is about 0.2 and more stable than the coatings prepared without magnetism. The polarization test indicated that the coating prepared with magnetism has better corrosion resistance.

2012 ◽  
Vol 482-484 ◽  
pp. 909-913 ◽  
Author(s):  
Shu Fang Zhang ◽  
Rong Fa Zhang ◽  
Wen Kui Li ◽  
Yi Min Zhong

Anodic coatings were prepared by micro arc oxidation on AZ91HP in a base solution of 18 g/L Na2SiO3 ּ9H2Oand 4 g/L tannic acid with 5-20 g/l NaOH. The influence of NaOH concentration on final voltage and corrosion resistance were studied. The morphologies of anodic coatings were determined by environmental scanning electron microscope (ESEM). Potentiodynamic polarization test was performed in 3.5wt.% NaCl solution to evaluate the corrosion resistance of anodic coatings. The results show that the NaOH concentration has greatly effect on the final voltage, the compositions, thickness, morphologies and corrosion resistance. The corrosion resistance of anodic coatings is the best in the base solution containing 10 g/l NaOH.


Author(s):  
Bo Xu ◽  
Yafeng He ◽  
Xiangzhi Wang ◽  
Weimin Gan

Abstract Ceramic coatings were prepared on the surface of 7050 highstrength aluminum alloy using micro-arc oxidation in an aluminate electrolyte with added graphene. To analyze the surface morphology, roughness, phase composition, and corrosion resistance, scanning electron microscopy, X-ray diffraction, X-ray photoelectron, and electrochemical measurements were used, respectively. The addition of 9 g · L-1 of graphene to the electrolyte decreased the micro-pore size of the composite coatings and improved the density. In addition, with the addition of graphene, the roughness was the lowest, and the corrosion resistance was significantly improved.


2011 ◽  
Vol 189-193 ◽  
pp. 891-896
Author(s):  
Yong Chun Guo ◽  
Jian Ping Li ◽  
Jin Shan Li ◽  
Ping Wang

The regulation of ceramic coating formed by micro-arc oxidation on Mg-3Nd-0.2Zn-0.4Zr(wt%) magnesium alloys has been investigated by SEM and XRD. The relation of phase structure and corrosion resistance of MgO coating formed by micro-arc oxidation in different growth stages has been analyzed. The results have shown that in the initial stages of micro-arc oxidation, the growth of coating accords with linear regularity, which is the stage of anodic oxidation controlled by electrochemical polarization. With elongated treated time and increased thickness of the coating, the growth of coating accords with parabolic and linear regularity, which is the stage of micro-arc oxidation. In the stage of local arc light, the slope of parabola and thickness of loose coating increases so that the growth rate enhances. The phase structure of loose coating is mainly composed of MgSiO3 and the phase structure of compact ceramic coating is mainly composed of MgO. From the stage of micro-arc oxidation to local arc light, corrosion resistance of coating firstly increase and then decrease. The satisfied corrosion resistance corresponds to the coating time ranging from 7 to15minutes.The addition of rare earth elements in the magnesium alloy reduces the amount of smooth areas on ceramic surface. So the ceramic coating becomes more compact and smooth. The rare earth elements don’t form independent phases in ceramic coating but affect the relative proportion of constitution phases, resulting in the reduction of intermixed magnesium phase and the increase of the MgO and MgSiO3 phases.


2014 ◽  
Vol 21 (02) ◽  
pp. 1450026
Author(s):  
ZHAO QING LIN ◽  
HUI JUN YU ◽  
SI YU HE ◽  
YI NING HE ◽  
CHUAN ZHONG CHEN

The ceramic coatings were prepared on 2A12 alloy by micro-arc oxidation in CH 3 COONa – Na 2 WO 4 electrolyte system with different concentration of KOH added. The effects of KOH in this electrolyte on micromorphology, phase compositions, adhesion and corrosion resistance of the coatings were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), scratch test and electrochemistry workstation. The results show that KOH has a significant influence on the surface morphology, which can make the surface smoother. The adhesion of the coating becomes stronger with the increase of KOH in the electrolyte. The corrosion resistance of the coated specimen increases a lot compared with that of the substrate. And the lowest corrosion current density (I corr ) of the coating prepared in the electrolyte with KOH is about three orders of magnitude lower than that of the substrate.


2012 ◽  
Vol 454 ◽  
pp. 126-129 ◽  
Author(s):  
Jing Long Gao ◽  
Zhong Cai Shao

LY12 aluminum alloy samples were treated by micro-arc oxidation in sodium metasilicate electrolytes with graphite powder. The effects of graphite concentration on thickness, roughness, friction coefficient and phase composite of ceramic coating were investigated. The results indicated that the roughness and friction coefficient of ceramic coatings increased linearly. However, the thickness decreased adding graphite powder. XRD analyses indicated that the ceramic coatings fabricated on the surface of aluminum alloys by micro-arc oxidization were composed of graphite phase. SEM showed that the porosity of the ceramic coatings with distributing nonuniform micropore diameter were inceased with the increasing graphite concentration.


2012 ◽  
Vol 571 ◽  
pp. 38-42
Author(s):  
Shun Qi Zheng ◽  
Li Ping Zhu ◽  
Gui Ru Chang ◽  
Chuang Lu ◽  
Xiao Jing Li

Micro-arc oxidation (MAO) method was used for the surface modification of MB3 magnesium alloy. The morphology feature, phase composition, and chemical composition of the formed ceramic coatings were studied by metallographic microscope, scanning electron microscopy (SEM), XRD, respectively. Drop test has been applied to study the corrosion resistance of MB3 Mg alloy with and without micro-arc oxidation treatment. The present result indicates that, through MAO, ceramic coatings were in-situ fabricated on the surface of MB3 Mg alloy, the micro-arc oxidation coating is relatively dense and uniform, maximum thickness is more than 97μm. The dominant phase of the coating is spinal Mg2SiO4 (Forsterite) and dissociative MgO (Periclase). Drop test shows that after oxidation the corrosion resistance of MB3 Mg alloy is greatly improved.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4045
Author(s):  
Rafał Mech ◽  
Jolanta Gąsiorek ◽  
Amadeusz Łaszcz ◽  
Bartosz Babiarczuk

The paper presents a comparison of the results of the corrosion resistance for three Fe-B-Co-Si-based newly developed alloys with the addition of Nb and V. The corrosion performance differences and microstructure variations were systematically studied using scanning electron microscope, electric corrosion equipment, X-ray diffractometer, and differential calorimeter. It has been shown that each alloying addition increased the corrosion resistance. The highest corrosion resistance obtained by potentiodynamic polarization was found for the alloy with both Nb and V addons (Fe57Co10B20Si5Nb4V4) and lowest in the case of the basic four-element Fe62Co15B14Si9 material. This shows that the proper choice of additions is of significant influence on the final performance of the alloy and allows tailoring of the material for specific applications.


2011 ◽  
Vol 704-705 ◽  
pp. 1273-1278
Author(s):  
Cheng Gao ◽  
Jin Yong Xu ◽  
Xuan Yi Shi ◽  
Ya Juan Liu ◽  
Jing Chun Zhang ◽  
...  

In micro-arc oxidation process, ceramic coating had a rapid growth all along by the way of constant current oxidation, and ceramic coating had a low roughness by the way of constant voltage oxidation. But few research focus on the mixed control process of constant current oxidation and constant voltage oxidation. In this paper we propose a variable parameter process that can combine the advantages of constant current and constant voltage oxidation for the first time. The growth kinetics of different technics was analyzed according to the change law of current and voltage. Surface topographs of ceramic coating were observed using scanning electron microscopy (SEM). The friction tests were carried out using a self-made friction tester. The results show that ceramic coating has an upper growth rate and a low roughness by the process of constant current+constant voltage oxidation. The ceramic coating has a high growth rate by process of constant voltage+constant current oxidation. The results of friction test indicate that the wear rate and roughness of ceramic coating are positive correlation at early stage of friction. While the ceramic coatings treated by different technics have the close wear rate at stable friction stage, which embodies the inner layer of ceramic coating has a well antiwear behavior.


2011 ◽  
Vol 391-392 ◽  
pp. 1183-1188 ◽  
Author(s):  
Jian Hua Wang ◽  
Xing Ming Wang ◽  
Chun Mei Liu ◽  
Xu Ping Su ◽  
Chang Jun Wu ◽  
...  

The microstructure of the galvanized coating was investigated using scanning electron microscope equipped with energy dispersive X-ray spectroscope. The immersing and electrochemical corrosion tests were carried out to study the corrosion resistance of the galvanized coating. The addition of Bi in Zn-bath affects remarkably the morphology of the galvanized coating. The thickness of δ + ζ phase layer in the coating reaches the maximum when the content of Bi in Zn-bath is 0.5 wt.%. The corrosion resistance of the galvanized coating declines with the increase of the content of Bi.


Sign in / Sign up

Export Citation Format

Share Document